--- /dev/null
+"""Cuckoo search optimization"""
+
+import random
+import lhs
+from math import sin, gamma, pi
+
+class Space(object):
+ def __init__(self, dimension, bound, d_function, n_nest):
+ self.pa = 0.25 #parameter
+ self.dimension = dimension
+ self.bound = bound
+ self.d_function = d_function
+ self.nests = [(d_function(*p), p) for p in lhs.latin_hypercube(dimension, bound, n_nest)]
+ self.best_value, self.best = max(self.nests)
+
+def new_nest(space):
+ position = [2 * space.bound * random.random()
+ - space.bound for _ in xrange(space.dimension)]
+ value = space.d_function(*position)
+ return (value, position)
+
+def get_cuckoos(space):
+ beta = 1.5
+ sigma = (gamma(1. + beta) * sin(pi * beta / 2.) / (gamma((1. + beta) / 2.) *
+ beta * 2. ** ((beta - 1.) / 2))) ** (1. / beta)
+ u_a = [[random.gauss(0, 1) * sigma for _ in xrange(space.dimension)] for _ in
+ xrange(len(space.nests))]
+ v_a = [[random.gauss(0, 1) for _ in xrange(space.dimension)] for _ in
+ xrange(len(space.nests))]
+ r_a = [[random.gauss(0, 1) for _ in xrange(space.dimension)] for _ in
+ xrange(len(space.nests))]
+ step = [[u / abs(v) ** (1. / beta) for (u, v) in zip(u_l, v_l)]
+ for (u_l, v_l) in zip(u_a, v_a)]
+ stepsize = [[0.01 * st * (n_e - be) for (st, n_e, be)
+ in zip(step_l, n_l, space.best)]
+ for (step_l, (_, n_l)) in zip(step, space.nests)]
+ s = [[n + st * r for (n, st, r) in zip(n_l, st_l, r_l)]
+ for ((_, n_l), st_l, r_l) in zip(space.nests, stepsize, r_a)]
+ cuckoos = [[min(max(st, - space.bound), space.bound) for st in st_l]
+ for st_l in s]
+ return [(space.d_function(*c), c) for c in cuckoos]
+
+def get_empty(space):
+ r = random.random()
+ r_arr = [[random.random() for _ in xrange(space.dimension)] for _ in
+ xrange(len(space.nests))]
+ perm1 = [n for (_, n) in space.nests]
+ random.shuffle(perm1)
+ perm2 = [n for (_, n) in space.nests]
+ random.shuffle(perm2)
+ stepsize = [[p1 - p2 for (p1, p2) in zip (p1l, p2l)] for (p1l, p2l) in
+ zip(perm1, perm2)]
+ step = [[(r * p * (1 if random.random() > space.pa else 0)) for p in n] for n in stepsize]
+ empty = [[(p + s) for (p, s) in zip(sl, n)]
+ for (sl, (_, n)) in zip(step, space.nests)]
+ empty = [[min(max(st, - space.bound), space.bound) for st in st_l]
+ for st_l in empty]
+ return [(space.d_function(*e), e) for e in empty]
+
+def next_turn(space):
+ cuckoos = get_cuckoos(space)
+ space.nests = [max(n, m) for (n, m) in zip(space.nests, cuckoos)]
+ nests = get_empty(space)
+ space.nests = [max(n, m) for (n, m) in zip(space.nests, nests)]
+ space.best_value, space.best = max(space.nests)
+
+def optimize(dimension, boundary, function_d, n_nest, n_turns):
+ space = Space(dimension, boundary, function_d, n_nest)
+ for _ in xrange(n_turns):
+ next_turn(space)
+ return space.best
from intrsc import intersections_from_angl_dist
from linef import line_from_angl_dist
import pcf
-import pso
+import cs as Optimizer
class GridFittingFailedError(Exception):
pass
for line in sum(lines, []):
dr_l.line(line_from_angl_dist(line, size), width=1, fill=255)
- im_l = im_l.filter(MyGaussianBlur(radius=5))
+ im_l = im_l.filter(MyGaussianBlur(radius=3))
#GaussianBlur is undocumented class, may not work in future versions of PIL
im_l_s = im_l.tostring()
f_dist = partial(job_4, im_l=im_l_s, v1=v1, v2=v2, h1=h1, h2=h2,
dv=delta_v, dh=delta_h, size=size)
- x_v, y_v, x_h, y_h = pso.optimize(4, 30, f_dist, 32, 1028)
+ x_v, y_v, x_h, y_h = Optimizer.optimize(4, 30, f_dist, 128, 256)
v1 = (v1[0] + x_v * delta_v, v1[1] + x_v)
v2 = (v2[0] + y_v * delta_v, v2[1] + y_v)
--- /dev/null
+import random
+
+def test():
+ bound = 10.
+ m = 25
+ l = latin_hypercube(2, bound, m)
+ import matplotlib.pyplot as pyplot
+ fig = pyplot.figure()
+ fig.add_subplot(121)
+ pyplot.plot([v[0] for v in l], [v[1] for v in l], 'o')
+ fig.add_subplot(122)
+ pyplot.plot([random.random() * 2 * bound - bound for _ in xrange(m)],
+ [random.random() * 2 * bound - bound for _ in xrange(m)], 'o')
+ pyplot.show()
+ import sys
+ sys.exit()
+
+def latin_hypercube(dim, bound, m):
+ dv = (2 * bound) / float(m)
+ dim_p = [range(m) for _ in xrange(dim)]
+ for p in dim_p:
+ random.shuffle(p)
+ points = [list(l) for l in zip(*dim_p)]
+ points = [[(float(l) + random.random()) * dv - bound for l in p] for p in points]
+ return points
import multiprocessing
from functools import partial
-def particle(dimension, bound, v_max, func_d):
- position = [2 * bound * random.random() - bound for _ in xrange(dimension)]
+import lhs
+
+def particle(dimension, bound, v_max, func_d, pos=None):
+ if not pos:
+ position = [2 * bound * random.random() - bound for _ in xrange(dimension)]
+ else:
+ position = pos
velocity = [2 * v_max * random.random() - v_max for _ in xrange(dimension)]
value = func_d(*position)
return value, position, velocity, value, position
def optimize(dimension, boundary, function_d, n_parts, n_turns):
pool = multiprocessing.Pool(None)
v_max = boundary
- particles = [particle(dimension, boundary, v_max, function_d)
- for _ in xrange(n_parts)]
+ particles = [particle(dimension, boundary, v_max, function_d, pos)
+ for pos in lhs.latin_hypercube(dimension, bound, n_parts)]
gl_best = max(particles)
for _ in xrange(n_turns):
move_p = partial(move,