from PIL import Image, ImageFilter
+import pcf
+
def edge_detection(image):
image = image.filter(ImageFilter.GaussianBlur())
# GaussianBlur is undocumented class, it might not work in future versions
# of PIL
- image_l = image.load()
- new_image = Image.new('L', image.size)
- new_image_l = new_image.load()
-
- for x in xrange(2, image.size[0] - 2):
- for y in xrange(2, image.size[1] - 2):
- pix = (sum([sum([
- image_l[a, b]
- for b in range(y - 2, y + 3)])
- for a in range(x - 2, x + 3)])
- - (25 * image_l[x, y]))
- if pix > 255:
- pix = 255
- if pix < 0:
- pix = 0
- new_image_l[x, y] = pix
- return new_image
+ image = Image.fromstring('L', image.size, pcf.edge(image.size, image.tostring()))
+ return image
def peaks(image):
image_l = image.load()
from PIL import Image
+import pcf
+
class Hough:
def __init__(self, size):
self.size = size
self.initial_angle = (pi / 4) + (self.dt / 2)
def transform(self, image):
- image_l = image.load()
- size = image.size
-
- matrix = [[0]*size[1] for _ in xrange(size[0])]
-
- dt = self.dt
- initial_angle = self.initial_angle
-
- for x in xrange(size[0]):
- for y in xrange(size[1]):
- if image_l[x, y]:
- # for every angle:
- for a in xrange(size[1]):
- # find the distance:
- # distance is the dot product of vector (x, y) - centerpoint
- # and a unit vector orthogonal to the angle
- distance = (((x - (size[0] / 2)) * sin((dt * a) + initial_angle)) +
- ((y - (size[1] / 2)) * -cos((dt * a) + initial_angle)) +
- size[0] / 2)
- # column of the matrix closest to the distance
- column = int(round(distance))
- if 0 <= column < size[0]:
- matrix[column][a] += 1
-
- new_image = Image.new('L', size)
- new_image_l = new_image.load()
-
- minimum = min([min(m) for m in matrix])
-
- maximum = max([max(m) for m in matrix]) - minimum
-
- for y in xrange(size[1]):
- for x in xrange(size[0]):
- new_image_l[x, y] = (float(matrix[x][y] - minimum) / maximum) * 255
-
- return new_image
+ image_s = pcf.hough(image.size, image.tostring(), self.initial_angle, self.dt)
+ image = Image.fromstring('L', image.size, image_s)
+ return image
def lines_from_list(self, p_list):
lines = []
#include <Python.h>
+#include <math.h>
+
+static PyObject* py_hough(PyObject* self, PyObject* args)
+{
+ const unsigned char *image;
+ int x;
+ int y;
+ int size;
+ double init_angle;
+ double dt;
+
+ int i;
+ int j;
+ int a;
+
+ double distance;
+ int column;
+ int minimum;
+ int maximum;
+
+ int *matrix;
+ unsigned char *n_image;
+ PyObject *result;
+
+ if (!PyArg_ParseTuple(args, "(ii)s#dd", &x, &y, &image, &size, &init_angle, &dt)) return NULL;
+
+
+ matrix = (int*) malloc(size * sizeof(int));
+ for (i=0; i < x * y; i++) {
+ matrix[i] = 0;
+ }
+
+
+
+ for (i=0; i < x; i++) {
+ for (j=0; j < y; j++) {
+ if (image[j * x + i]){
+ for (a=0; a < y; a++){
+ distance = (((i - x / 2) * sin((dt * a) + init_angle)) +
+ ((j - y / 2) * -cos((dt * a) + init_angle)) +
+ x / 2);
+ column = (int) round(distance);
+ if ((0 <= column) && (column < x)){
+ matrix[a * x + column]++;
+ }
+ }
+ }
+ }
+ }
+
+
+
+
+ n_image = (char*) malloc(size * sizeof(char));
+ minimum = matrix[0];
+ maximum = matrix[0];
+ for (i=1; i < x * y; i++){
+ if (matrix[i] < minimum) minimum = matrix[i];
+ if (matrix[i] > maximum) maximum = matrix[i];
+ }
+ maximum = maximum - minimum + 1;
+ for (i=0; i < x * y; i++){
+ n_image[i] = (char) ((((float) (matrix[i] - minimum)) / maximum) * 256);
+ }
+
+ free(matrix);
+
+ result = Py_BuildValue("s#", n_image, size);
+ free(n_image);
+ return result;
+}
static PyObject* py_edge(PyObject* self, PyObject* args)
{
static PyMethodDef myModule_methods[] = {
{"edge", py_edge, METH_VARARGS},
+ {"hough", py_hough, METH_VARARGS},
{NULL, NULL}
};