+++ /dev/null
-import pickle
-import matplotlib.pyplot as pyplot
-from math import sqrt
-import random
-import sys
-import time
-
-import src.linef as linef
-import src.gridf as gridf
-from src.manual import lines as g_grid
-
-import new_geometry as gm
-
-random.seed(12345)
-
-def plot_line(line, c):
- points = linef.line_from_angl_dist(line, (520, 390))
- pyplot.plot(*zip(*points), color=c)
-
-def dst((x, y), (a, b, c)):
- return abs(a * x + b * y + c) / sqrt(a*a+b*b)
-
-def points_to_line((x1, y1), (x2, y2)):
- return (y2 - y1, x1 - x2, x2 * y1 - x1 * y2)
-
-def to_general(line):
- points = linef.line_from_angl_dist(line, (520, 390))
- return points_to_line(*points)
-
-def nearest(lines, point):
- return min(map(lambda l: dst(point, l), lines))
-
-def nearest2(lines, point):
- return min(map(lambda l: dst(point, points_to_line(*l)), lines))
-
-size = (520, 390)
-
-def generate_models(sgrid, lh):
- for f in [0, 1, 2, 3, 5, 7, 8, 11, 15, 17]:
- grid = gm.fill(sgrid[0], sgrid[1], lh , f)
- grid = [sgrid[0]] + grid + [sgrid[1]]
- for s in xrange(17 - f):
- grid = [gm.expand_left(grid, lh)] + grid
- yield grid
- for i in xrange(17 - f):
- grid = grid[1:]
- grid.append(gm.expand_right(grid, lh))
- yield grid
-
-def score(grid, points, limit):
- d = max(map(lambda l: dst((0, 0), points_to_line(*l)), grid + grid))
- if d > limit:
- return 0
- return len([p for p in points if nearest2(grid, p) <= 2])
-
-points = pickle.load(open('edges.pickle'))
-
-lines = pickle.load(open('lines.pickle'))
-
-r_lines = pickle.load(open('r_lines.pickle'))
-
-#pyplot.scatter(*zip(*sum(r_lines, [])))
-#pyplot.show()
-
-l1, l2 = lines
-
-lines_general = map(to_general, sum(lines, []))
-near_points = [p for p in points if nearest(lines_general, p) <= 2]
-
-while True:
- t0 = time.time()
- #l1s = random.sample(l1, 2)
- l1s = [l1[0], l1[-1]]
- l1s.sort(key=lambda l: l[1])
- sgrid = map(lambda l:linef.line_from_angl_dist(l, size), l1s)
- middle = lambda m: ((m, 0),(m, 390))
- middle = middle(gm.intersection((sgrid[0][0], sgrid[1][1]),
- (sgrid[0][1], sgrid[1][0]))[0])
- lh = (gm.intersection(sgrid[0], middle), gm.intersection(sgrid[1], middle))
- sc, grid = max(map(lambda g: (score(g, points, 400), g), generate_models(sgrid, lh)))
- map(lambda l: pyplot.plot(*zip(*l), color='b'), grid)
- #l2s = random.sample(l2, 2)
- l2s = [l2[0], l2[-1]]
- l2s.sort(key=lambda l: l[1])
- sgrid = map(lambda l:linef.line_from_angl_dist(l, size), l2s)
- middle = lambda m: ((0, m),(520, m))
- middle = middle(gm.intersection((sgrid[0][0], sgrid[1][1]),
- (sgrid[0][1], sgrid[1][0]))[1])
- lh = (gm.intersection(sgrid[0], middle), gm.intersection(sgrid[1], middle))
- sc, grid = max(map(lambda g: (score(g, points, 530), g), generate_models(sgrid, lh)))
- print time.time() - t0
-
- pyplot.scatter(*zip(*near_points))
- map(lambda l: pyplot.plot(*zip(*l), color='b'), grid)
- plot_line(l2s[0], 'r')
- plot_line(l2s[1], 'r')
- plot_line(l1s[0], 'r')
- plot_line(l1s[1], 'r')
- pyplot.xlim(0, 520)
- pyplot.ylim(0, 390)
- pyplot.show()
-
-sys.exit()
-
-
-
-
-for l in lines[0]:
- plot_line(l, 'g')
-
-for l in lines[1]:
- plot_line(l, 'g')
-
-pyplot.xlim(0, 520)
-pyplot.ylim(0, 390)
-pyplot.show()
--- /dev/null
+from math import sqrt
+import random
+import sys
+
+import linef as linef
+import gridf as gridf
+from manual import lines as g_grid
+from geometry import l2ad
+import new_geometry as gm
+
+
+def plot_line(line, c):
+ points = linef.line_from_angl_dist(line, (520, 390))
+ pyplot.plot(*zip(*points), color=c)
+
+def dst((x, y), (a, b, c)):
+ return abs(a * x + b * y + c) / sqrt(a*a+b*b)
+
+def points_to_line((x1, y1), (x2, y2)):
+ return (y2 - y1, x1 - x2, x2 * y1 - x1 * y2)
+
+def to_general(line):
+ points = linef.line_from_angl_dist(line, (520, 390))
+ return points_to_line(*points)
+
+def nearest(lines, point):
+ return min(map(lambda l: dst(point, l), lines))
+
+def nearest2(lines, point):
+ return min(map(lambda l: dst(point, points_to_line(*l)), lines))
+
+size = (520, 390)
+
+def generate_models(sgrid, lh):
+ for f in [0, 1, 2, 3, 5, 7, 8, 11, 15, 17]:
+ grid = gm.fill(sgrid[0], sgrid[1], lh , f)
+ grid = [sgrid[0]] + grid + [sgrid[1]]
+ for s in xrange(17 - f):
+ grid = [gm.expand_left(grid, lh)] + grid
+ yield grid
+ for i in xrange(17 - f):
+ grid = grid[1:]
+ grid.append(gm.expand_right(grid, lh))
+ yield grid
+
+def score(grid, lines, limit):
+ dst = lambda (a, b, c): (a * 260 + b * 195 + c) / sqrt(a*a+b*b)
+ dsg = lambda l: dst(points_to_line(*l))
+ ds = map(dsg, grid)
+ d = max(map(abs, ds))
+ if d > limit:
+ return 999999
+ score = 0
+ for line in lines:
+ s = min(map(lambda g: abs(line[1] - g), ds))
+ s = min(s, 2)
+ score += s
+
+ return score
+
+def lines2grid(lines, perp_l):
+ b1, b2 = perp_l[0], perp_l[-1]
+ f = lambda l: (gm.intersection(b1, l), gm.intersection(b2, l))
+ return map(f, lines)
+
+def test():
+ import pickle
+ import matplotlib.pyplot as pyplot
+ import time
+
+ points = pickle.load(open('edges.pickle'))
+
+ lines = pickle.load(open('lines.pickle'))
+
+ r_lines = pickle.load(open('r_lines.pickle'))
+
+ #pyplot.scatter(*zip(*sum(r_lines, [])))
+ #pyplot.show()
+
+ l1, l2 = lines
+
+ lines_general = map(to_general, sum(lines, []))
+ near_points = [p for p in points if nearest(lines_general, p) <= 2]
+
+ while True:
+ t0 = time.time()
+ sc1, gridv = 999999, None
+ for i in range(250):
+ l1s = random.sample(l1, 2)
+ l1s.sort(key=lambda l: l[1])
+ sgrid = map(lambda l:linef.line_from_angl_dist(l, size), l1s)
+ middle = lambda m: ((m, 0),(m, 390))
+ middle = middle(gm.intersection((sgrid[0][0], sgrid[1][1]),
+ (sgrid[0][1], sgrid[1][0]))[0])
+ lh = (gm.intersection(sgrid[0], middle), gm.intersection(sgrid[1], middle))
+ sc1_n, gridv_n = min(map(lambda g: (score(g, l1, 210), g), generate_models(sgrid, lh)))
+ if sc1_n < sc1:
+ sc1, gridv = sc1_n, gridv_n
+
+ sc2, gridh = 999999, None
+ for i in range(250):
+ l2s = random.sample(l2, 2)
+ l2s.sort(key=lambda l: l[1])
+ sgrid = map(lambda l:linef.line_from_angl_dist(l, size), l2s)
+ middle = lambda m: ((0, m),(520, m))
+ middle = middle(gm.intersection((sgrid[0][0], sgrid[1][1]),
+ (sgrid[0][1], sgrid[1][0]))[1])
+ lh = (gm.intersection(sgrid[0], middle), gm.intersection(sgrid[1], middle))
+ sc2_n, gridh_n = min(map(lambda g: (score(g, l2, 275), g), generate_models(sgrid, lh)))
+ if sc2_n < sc2:
+ sc2, gridh = sc2_n, gridh_n
+ gridv, gridh = lines2grid(gridv, gridh), lines2grid(gridh, gridv)
+ print time.time() - t0
+ print sc1, sc2
+
+ pyplot.scatter(*zip(*near_points))
+
+ #map(lambda l: plot_line(l, 'g'), l1 + l2)
+ map(lambda l: pyplot.plot(*zip(*l), color='g'), gridv)
+ map(lambda l: pyplot.plot(*zip(*l), color='g'), gridh)
+ #plot_line(l2s[0], 'r')
+ #plot_line(l2s[1], 'r')
+ #plot_line(l1s[0], 'r')
+ #plot_line(l1s[1], 'r')
+ pyplot.xlim(0, 520)
+ pyplot.ylim(0, 390)
+ pyplot.show()
+
+def find(lines, size, l1, l2, bounds, hough, show_all, do_something, logger):
+ logger("finding the grid")
+ l1, l2 = lines
+ sc1, gridv = 999999, None
+ for i in range(250):
+ l1s = random.sample(l1, 2)
+ l1s.sort(key=lambda l: l[1])
+ sgrid = map(lambda l:linef.line_from_angl_dist(l, size), l1s)
+ middle = lambda m: ((m, 0),(m, 390))
+ middle = middle(gm.intersection((sgrid[0][0], sgrid[1][1]),
+ (sgrid[0][1], sgrid[1][0]))[0])
+ lh = (gm.intersection(sgrid[0], middle), gm.intersection(sgrid[1], middle))
+ sc1_n, gridv_n = min(map(lambda g: (score(g, l1, 210), g), generate_models(sgrid, lh)))
+ if sc1_n < sc1:
+ sc1, gridv = sc1_n, gridv_n
+
+ sc2, gridh = 999999, None
+ for i in range(250):
+ l2s = random.sample(l2, 2)
+ l2s.sort(key=lambda l: l[1])
+ sgrid = map(lambda l:linef.line_from_angl_dist(l, size), l2s)
+ middle = lambda m: ((0, m),(520, m))
+ middle = middle(gm.intersection((sgrid[0][0], sgrid[1][1]),
+ (sgrid[0][1], sgrid[1][0]))[1])
+ lh = (gm.intersection(sgrid[0], middle), gm.intersection(sgrid[1], middle))
+ sc2_n, gridh_n = min(map(lambda g: (score(g, l2, 275), g), generate_models(sgrid, lh)))
+ if sc2_n < sc2:
+ sc2, gridh = sc2_n, gridh_n
+ gridv, gridh = lines2grid(gridv, gridh), lines2grid(gridh, gridv)
+
+ grid = [gridv, gridh]
+ grid_lines = [[l2ad(l, size) for l in grid[0]],
+ [l2ad(l, size) for l in grid[1]]]
+
+ return grid, grid_lines