slowly getting there
authorTomas Musil <tomik.musil@gmail.com>
Sat, 19 Jul 2014 20:37:29 +0000 (22:37 +0200)
committerTomas Musil <tomik.musil@gmail.com>
Sat, 19 Jul 2014 20:37:29 +0000 (22:37 +0200)
src/gridf3.py
src/intrsc.py

index 105b78f..16d9d7b 100644 (file)
@@ -192,7 +192,7 @@ def find(lines, size, l1, l2, bounds, hough, show_all, do_something, logger):
     for n_tries in xrange(3):
         logger("finding the diagonals")
         model = Diagonal_model(points)
-        diag_lines = ransac.ransac_multi(6, points, 2, 800, model=model)
+        diag_lines = ransac.ransac_multi(6, points, 2, 400, model=model)
         diag_lines = [l[0] for l in diag_lines]
         centers = []
         cen_lin = []
index 62f1498..b0e798c 100644 (file)
@@ -94,8 +94,10 @@ def board(image, intersections, show_all, do_something, logger):
     #color_data = [(norm_s0(s[0]), norm_s1(s[1])) for s in board_raw]
     color_data = [(s[0], s[1]) for s in board_raw]
 
+    init_x = sum(c[0] for c in color_data) / float(len(color_data))
+
     clusters, score = k_means.cluster(3, 2,zip(color_data, range(len(color_data))),
-                               [[0., 0.5], [0.5, 0.5], [1., 0.5]])
+                               [[0., 0.5], [init_x, 0.5], [1., 0.5]])
 #    clusters1, score1 = k_means.cluster(1, 2,zip(color_data, range(len(color_data))),
 #                               [[0.5, 0.5]])
 #    clusters2, score2 = k_means.cluster(2, 2,zip(color_data, range(len(color_data))),