+import multiprocessing
+
import Image, ImageDraw, ImageFilter
from manual import lines as g_grid, l2ad, intersection, line as g_line
get_grid(a + X[y] * s * v1,
b + Y[y] * s * v1,
c, d, hough, size),
- size) for y in range(0,2 * k)]
-
+ size) for y in range(2 * k)]
+
+def job_br1(args):
+ X, Y, im_l, a, b, c, d, s, v1, v2, k, hough, size = args
+ return [(distance(im_l,
+ get_grid(a + X[y] * s * v1,
+ b + Y[y] * s * v1,
+ c, d, hough, size),
+ size), a + X[y] * s * v1, b + Y[y] * s * v1) for y in range(2 *k)]
+
+def job_br2(args):
+ X, Y, im_l, a, b, c, d, s, v1, v2, k, hough, size = args
+ return [(distance(im_l,
+ get_grid(a, b, c + X[y] * s * v2,
+ d + Y[y] * s * v2,
+ hough, size),
+ size), c + X[y] * s * v2, d + Y[y] * s * v2) for y in range(2 *k)]
+
def error_surface(im_l, a, b, c, d, hough, size, v1):
import matplotlib.pyplot as plt
from matplotlib import cm
- import multiprocessing
import time
import sys
import pickle
dr_l = ImageDraw.Draw(im_l)
for line in sum(lines, []):
dr_l.line(line_from_angl_dist(line, size), width=1, fill=255)
- im_l = im_l.filter(MyGaussianBlur(radius=50))
+ im_l = im_l.filter(MyGaussianBlur(radius=30))
#GaussianBlur is undocumented class, may not work in future versions of PIL
im_l = im_l.tostring()
grid = get_grid(a, b, c, d, hough, size)
dist = distance(im_l, grid, size)
+
+ #let's try the bruteforce aproach:
+ s = 0.001
+ k = 50
+ X, Y = [], []
+ for i in range(-k, k):
+ X.append(range(-k, k))
+ Y.append(2*k*[i])
+
+ tasks = [(X[x], Y[x], im_l, a, b, c, d, s, v1, v2, k, hough, size) for x in xrange(0, 2 * k)]
+
+ pool = multiprocessing.Pool(None)
+
+ #start = time.time()
+ opt_ab = pool.map(job_br1, tasks, 1)
+ opt_cd = pool.map(job_br2, tasks, 1)
+ an, bn, cn, dn = 4 * [0]
+ d1 = 0
+ for lst in opt_ab:
+ for tpl in lst:
+ if tpl[0] > d1:
+ d1 = tpl[0]
+ an, bn = tpl[1], tpl[2]
+ d1 = 0
+ for lst in opt_cd:
+ for tpl in lst:
+ if tpl[0] > d1:
+ d1 = tpl[0]
+ cn, dn = tpl[1], tpl[2]
+ #print time.time() - start
+ grid = get_grid(an, bn, cn, dn, hough, size)
+ grid_lines = [[l2ad(l, size) for l in grid[0]], [l2ad(l, size) for l in grid[1]]]
+ return grid, grid_lines
+
+ #old optimization experiments:
print dist
- s = 0.02
- while True:
- ts1 = [(s, 0), (-s, 0), (s, s), (-s, -s), (-s, s), (s, -s), (0, s), (0, -s)]
+ path = [(0,0)] #MNTR
+ s = 0.01
+ for _ in range(10):
+ ts1 = [(s, 0), (0, s), (-s, 0), (0, -s)]
grids = [(get_grid(a + t[0] * v1, b + t[1] * v1,
c, d, hough, size), t) for t in ts1]
- distances = [(distance(im_l, grid, size),
- grid, t) for grid, t in grids]
- distances.sort(reverse=True)
- if distances[0][0] > dist:
- dist = distances[0][0]
- grid = distances[0][1]
- t = distances[0][2]
- a, b = a + t[0] * v1, b + t[1] * v1
- print dist
- s *= 0.75
- else:
- break
+ distances = [distance(im_l, grid, size) for (grid, t) in grids]
+ gradient = [(di - dist) for di in distances]
+ gradient = [gradient[0] - gradient[2], gradient[1] - gradient[3]]
+ norm = (gradient[0] ** 2 + gradient[1] ** 2) ** 0.5
+ gradient = [g / (100 * norm) for g in gradient]
+ path.append(gradient)
+ a, b = a + gradient[0] * v1, b + gradient[1] * v1
+ dist = distance(im_l, grid, size)
+ print dist
+
+ ###MNTR
+ import matplotlib.pyplot as plt
+ from matplotlib import cm
+ import pickle
+
+ X, Y, Z = pickle.load(open('surface250'))
+
+ plt.imshow(Z, cmap=cm.jet, interpolation='none',
+ origin='upper', extent=(-0.250, 0.250, -0.250, 0.250), aspect='equal')
+ plt.colorbar()
+ plt.plot([y for (x, y) in path], [x for (x, y) in path], 'go-')
+
+ plt.show()
+ ###MNTR
print "---"