def projection(point, line, vector):
return V(*intersection(g_line(point, point + vector.normal), g_line(*line)))
+
+def job(args):
+ X, Y, im_l, a, b, c, d, s, v1, k, hough, size = args
+ return [distance(im_l,
+ get_grid(a + X[y] * s * v1,
+ b + Y[y] * s * v1,
+ c, d, hough, size),
+ size) for y in range(0,2 * k)]
-def error_surface(lines, a, b, c, d, hough, size, v1):
+def error_surface(im_l, a, b, c, d, hough, size, v1):
import matplotlib.pyplot as plt
from matplotlib import cm
- import threading
- import Queue
+ import multiprocessing
import time
import sys
import pickle
- class Worker(threading.Thread):
- def __init__(self, q_in, q_out, job):
- threading.Thread.__init__(self)
- self.q_in = q_in
- self.q_out = q_out
- self.job = job
-
- def run(self):
- while True:
- x = self.q_in.get()
- try:
- self.q_out.put((x, self.job(x)))
- except Exception:
- pass
- print x
- self.q_in.task_done()
-
X = []
Y = []
Z = []
s = 0.001
- k = 200
+ k = 250
for i in range(-k, k):
X.append(range(-k, k))
Y.append(2*k*[i])
- job = lambda x: [distance(lines, get_grid(a + X[x][y] * s * v1,
- b + Y[x][y] * s * v1,
- c, d, hough, size),
- size) for y in range(0,2 * k)]
-
- q_in = Queue.Queue()
- q_out = Queue.Queue()
- for i in range(4):
- t = Worker(q_in, q_out, job)
- t.daemon = True
- t.start()
-
- start = time.time()
- for x in range(0, 2*k):
- q_in.put(x)
-
- q_in.join()
+ tasks = [(X[x], Y[x], im_l, a, b, c, d, s, v1, k, hough, size) for x in xrange(0, 2 * k)]
+ #everything is passed by value here; can it somehow be passed by reference?
+ pool = multiprocessing.Pool(None)
+
+ start = time.time()
+ Z = pool.map(job, tasks, 1)
print time.time() - start
- while True:
- try:
- Z.append(q_out.get_nowait())
- except Queue.Empty:
- break
-
- Z.sort()
- Z = [t for (x, t) in Z]
-
s_file = open('surface' + str(k), 'w')
pickle.dump((X, Y, Z), s_file)
s_file.close()
- plt.imshow(Z, cmap=cm.gnuplot2, interpolation='bicubic',
+ plt.imshow(Z, cmap=cm.jet, interpolation='bicubic',
origin='upper', extent=(-k, k, -k, k), aspect='equal')
plt.colorbar()
c = projection(c, l2, v2)
d = projection(d, l2, v2)
- #error_surface(lines, a, b, c, d, hough, size, v1)
+ im_l = Image.new('L', size)
+ dr_l = ImageDraw.Draw(im_l)
+ for line in sum(lines, []):
+ dr_l.line(line_from_angl_dist(line, size), width=1, fill=255)
+ im_l = im_l.filter(MyGaussianBlur(radius=50))
+ #GaussianBlur is undocumented class, may not work in future versions of PIL
+ im_l = im_l.tostring()
+
+ #error_surface(im_l, a, b, c, d, hough, size, v1)
grid = get_grid(a, b, c, d, hough, size)
- dist = distance(lines, grid, size)
+ dist = distance(im_l, grid, size)
print dist
s = 0.02
ts1 = [(s, 0), (-s, 0), (s, s), (-s, -s), (-s, s), (s, -s), (0, s), (0, -s)]
grids = [(get_grid(a + t[0] * v1, b + t[1] * v1,
c, d, hough, size), t) for t in ts1]
- distances = [(distance(lines, grid, size),
+ distances = [(distance(im_l, grid, size),
grid, t) for grid, t in grids]
distances.sort(reverse=True)
if distances[0][0] > dist:
ts1 = [(s, 0), (-s, 0), (s, s), (-s, -s), (-s, s), (s, -s), (0, s), (0, -s)]
grids = [(get_grid(a, b,
c + t[0] * v2, d + t[1] * v2, hough, size), t) for t in ts1]
- distances = [(distance(lines, grid, size),
+ distances = [(distance(im_l, grid, size),
grid, t) for grid, t in grids]
distances.sort(reverse=True)
if distances[0][0] > dist:
grid = g_grid(corners)
return grid
-def distance(lines, grid, size):
- im_l = Image.new('L', size)
- dr_l = ImageDraw.Draw(im_l)
- for line in sum(lines, []):
- dr_l.line(line_from_angl_dist(line, size), width=1, fill=255)
- im_l = im_l.filter(MyGaussianBlur(radius=15))
- #GaussianBlur is undocumented class, may not work in future versions of PIL
+def distance(im_l, grid, size):
im_g = Image.new('L', size)
dr_g = ImageDraw.Draw(im_g)
for line in grid[0] + grid[1]:
dr_g.line(line, width=1, fill=255)
#im_g = im_g.filter(MyGaussianBlur(radius=3))
+ #GaussianBlur is undocumented class, may not work in future versions of PIL
#im_d, distance = combine(im_l, im_g)
- distance = pcf.combine(im_l.tostring(), im_g.tostring())
+ distance = pcf.combine(im_l, im_g.tostring())
return distance
def combine(bg, fg):