score = 0
for line in lines:
s = min(map(lambda g: abs(line[1] - g), ds))
- s = min(s, 2)
+ s = min(s, 4)
score += s
return score
f = lambda l: (gm.intersection(b1, l), gm.intersection(b2, l))
return map(f, lines)
+def pertubations(grid, middle_l):
+ corners = [grid[0], grid[-1]]
+ for l in [0, 1]:
+ for c in [0, 1]:
+ for s in [0, 1]:
+ for x in [-1, 1]:
+ sgrid = corners
+ sgrid[l] = list(sgrid[l])
+ sgrid[l][c] = list(sgrid[l][c])
+ sgrid[l][c][s] += x
+ try:
+ middle = middle_l(sgrid)
+ lh = (gm.intersection(sgrid[0], middle), gm.intersection(sgrid[1], middle))
+ sgrid = ([sgrid[0]] +
+ gm.fill(sgrid[0], sgrid[1], lh, 17) +
+ [sgrid[1]])
+ except ZeroDivisionError:
+ continue
+
+ yield sgrid
+
+
def test():
import pickle
import matplotlib.pyplot as pyplot
while True:
t0 = time.time()
sc1, gridv = 999999, None
- for i in range(250):
- l1s = random.sample(l1, 2)
- l1s.sort(key=lambda l: l[1])
- sgrid = map(lambda l:linef.line_from_angl_dist(l, size), l1s)
- middle = lambda m: ((m, 0),(m, 390))
- middle = middle(gm.intersection((sgrid[0][0], sgrid[1][1]),
- (sgrid[0][1], sgrid[1][0]))[0])
- lh = (gm.intersection(sgrid[0], middle), gm.intersection(sgrid[1], middle))
- sc1_n, gridv_n = min(map(lambda g: (score(g, l1, 210), g), generate_models(sgrid, lh)))
- if sc1_n < sc1:
- sc1, gridv = sc1_n, gridv_n
-
sc2, gridh = 999999, None
- for i in range(250):
- l2s = random.sample(l2, 2)
- l2s.sort(key=lambda l: l[1])
- sgrid = map(lambda l:linef.line_from_angl_dist(l, size), l2s)
- middle = lambda m: ((0, m),(520, m))
- middle = middle(gm.intersection((sgrid[0][0], sgrid[1][1]),
- (sgrid[0][1], sgrid[1][0]))[1])
- lh = (gm.intersection(sgrid[0], middle), gm.intersection(sgrid[1], middle))
- sc2_n, gridh_n = min(map(lambda g: (score(g, l2, 275), g), generate_models(sgrid, lh)))
- if sc2_n < sc2:
- sc2, gridh = sc2_n, gridh_n
- gridv, gridh = lines2grid(gridv, gridh), lines2grid(gridh, gridv)
+ sc1_n, sc2_n = 999999, 999999
+ gridv_n, gridh_n = None, None
+ for k in range(50):
+ for i in range(5):
+ l1s = random.sample(l1, 2)
+ l1s.sort(key=lambda l: l[1])
+ sgrid = map(lambda l:linef.line_from_angl_dist(l, size), l1s)
+ middle_l1 = lambda m: ((m, 0),(m, 390))
+ middle_l = lambda sgrid: middle_l1(gm.intersection((sgrid[0][0], sgrid[1][1]),
+ (sgrid[0][1], sgrid[1][0]))[0])
+ middle = middle_l(sgrid)
+ lh = (gm.intersection(sgrid[0], middle), gm.intersection(sgrid[1], middle))
+ sc1_n, gridv_n = min(map(lambda g: (score(g, l1, 210), g), generate_models(sgrid, lh)))
+
+ p = True
+ while p:
+ p = False
+ for ng in pertubations(gridv_n, middle_l): # TODO randomize
+ sc = score(ng, l1, 210)
+ if sc < sc1_n:
+ sc1_n, gridv_n = sc, ng
+ p = True
+
+ if sc1_n < sc1:
+ sc1, gridv = sc1_n, gridv_n
+
+ for i in range(5):
+ l2s = random.sample(l2, 2)
+ l2s.sort(key=lambda l: l[1])
+ sgrid = map(lambda l:linef.line_from_angl_dist(l, size), l2s)
+ middle_l1 = lambda m: ((0, m),(520, m))
+ middle_l = lambda sgrid: middle_l1(gm.intersection((sgrid[0][0], sgrid[1][1]),
+ (sgrid[0][1], sgrid[1][0]))[1])
+ middle = middle_l(sgrid)
+ lh = (gm.intersection(sgrid[0], middle), gm.intersection(sgrid[1], middle))
+ sc2_n, gridh_n = min(map(lambda g: (score(g, l2, 275), g), generate_models(sgrid, lh)))
+
+ p = True
+ while p:
+ p = False
+ for ng in pertubations(gridh_n, middle_l): # TODO randomize
+ sc = score(ng, l2, 275)
+ if sc < sc2_n:
+ sc2_n, gridh = sc, ng
+ p = True
+
+ if sc2_n < sc2:
+ sc2, gridh = sc2_n, gridh_n
+
+ gridv, gridh = lines2grid(gridv, gridh), lines2grid(gridh, gridv)
+
print time.time() - t0
print sc1, sc2
import filters
import k_means
import output
+import linef
def dst(line):
"""Return normalized line."""
"""Return mean luma of the *cluster* of points."""
return sum(c[0][0] for c in cluster) / float(len(cluster))
+def to_general(line, size):
+ # TODO comment
+ (x1, y1), (x2, y2) = linef.line_from_angl_dist(line, size)
+ return (y2 - y1, x1 - x2, x2 * y1 - x1 * y2)
+
+def intersection(l1, l2):
+ a1, b1, c1 = l1
+ a2, b2, c2 = l2
+ delim = float(a1 * b2 - b1 * a2)
+ x = (b1 * c2 - c1 * b2) / delim
+ y = (c1 * a2 - a1 * c2) / delim
+ return x, y
+
def intersections_from_angl_dist(lines, size, get_all=True):
"""Take grid-lines and size of the image. Return intersections."""
+ lines1 = map(lambda l: to_general(l, size), lines[1])
+ lines0 = map(lambda l: to_general(l, size), lines[0])
intersections = []
- for (angl1, dist1) in lines[1]:
+ for l1 in lines1:
line = []
- for (angl2, dist2) in lines[0]:
- if abs(angl1 - angl2) > 0.4:
- i_x = (- ((dist2 / cos(angl2)) - (dist1 / cos(angl1)))
- / (tan(angl1) - tan(angl2)))
- i_y = (tan(angl1) * i_x) - (dist1 / cos(angl1))
- if get_all or (-size[0] / 2 < i_x < size[0] / 2 and
- -size[1] / 2 < i_y < size[1] / 2):
- line.append((int(i_x + size[0] / 2),
- int(i_y + size[1] / 2)))
+ for l2 in lines0:
+ line.append(intersection(l1, l2))
intersections.append(line)
return intersections