+ plt.show()
+
+ sys.exit()
+
+def find(lines, size, l1, l2, bounds, hough, do_something):
+ a, b, c, d = [V(*a) for a in bounds]
+ l1 = line_from_angl_dist(l1, size)
+ l2 = line_from_angl_dist(l2, size)
+ v1 = V(*l1[0]) - V(*l1[1])
+ v2 = V(*l2[0]) - V(*l2[1])
+ a = projection(a, l1, v1)
+ b = projection(b, l1, v1)
+ c = projection(c, l2, v2)
+ d = projection(d, l2, v2)
+
+ im_l = Image.new('L', size)
+ dr_l = ImageDraw.Draw(im_l)
+ for line in sum(lines, []):
+ dr_l.line(line_from_angl_dist(line, size), width=1, fill=255)
+ im_l = im_l.filter(MyGaussianBlur(radius=30))
+ #GaussianBlur is undocumented class, may not work in future versions of PIL
+ im_l = im_l.tostring()
+
+ #error_surface(im_l, a, b, c, d, hough, size, v1)
+
+ grid = get_grid(a, b, c, d, hough, size)
+ dist = distance(im_l, grid, size)
+
+ #let's try the bruteforce aproach:
+ s = 0.001
+ k = 50
+ X, Y = [], []
+ for i in range(-k, k):
+ X.append(range(-k, k))
+ Y.append(2*k*[i])
+
+ tasks = [(X[x], Y[x], im_l, a, b, c, d, s, v1, v2, k, hough, size) for x in xrange(0, 2 * k)]
+
+ pool = multiprocessing.Pool(None)
+
+ #start = time.time()
+ opt_ab = pool.map(job_br1, tasks, 1)
+ opt_cd = pool.map(job_br2, tasks, 1)
+ an, bn, cn, dn = 4 * [0]
+ d1 = 0
+ for lst in opt_ab:
+ for tpl in lst:
+ if tpl[0] > d1:
+ d1 = tpl[0]
+ an, bn = tpl[1], tpl[2]
+ d1 = 0
+ for lst in opt_cd:
+ for tpl in lst:
+ if tpl[0] > d1:
+ d1 = tpl[0]
+ cn, dn = tpl[1], tpl[2]
+ #print time.time() - start
+ grid = get_grid(an, bn, cn, dn, hough, size)
+ grid_lines = [[l2ad(l, size) for l in grid[0]], [l2ad(l, size) for l in grid[1]]]
+ return grid, grid_lines
+
+ #old optimization experiments:
+ print dist
+
+ path = [(0,0)] #MNTR
+ s = 0.01
+ for _ in range(10):
+ ts1 = [(s, 0), (0, s), (-s, 0), (0, -s)]
+ grids = [(get_grid(a + t[0] * v1, b + t[1] * v1,
+ c, d, hough, size), t) for t in ts1]
+ distances = [distance(im_l, grid, size) for (grid, t) in grids]
+ gradient = [(di - dist) for di in distances]
+ gradient = [gradient[0] - gradient[2], gradient[1] - gradient[3]]
+ norm = (gradient[0] ** 2 + gradient[1] ** 2) ** 0.5
+ gradient = [g / (100 * norm) for g in gradient]
+ path.append(gradient)
+ a, b = a + gradient[0] * v1, b + gradient[1] * v1
+ dist = distance(im_l, grid, size)
+ print dist
+
+ ###MNTR
+ import matplotlib.pyplot as plt
+ from matplotlib import cm
+ import pickle
+
+ X, Y, Z = pickle.load(open('surface250'))
+
+ plt.imshow(Z, cmap=cm.jet, interpolation='none',
+ origin='upper', extent=(-0.250, 0.250, -0.250, 0.250), aspect='equal')
+ plt.colorbar()
+ plt.plot([y for (x, y) in path], [x for (x, y) in path], 'go-')
+
+ plt.show()
+ ###MNTR
+
+ print "---"
+
+ s = 0.02
+ while True:
+ ts1 = [(s, 0), (-s, 0), (s, s), (-s, -s), (-s, s), (s, -s), (0, s), (0, -s)]
+ grids = [(get_grid(a, b,
+ c + t[0] * v2, d + t[1] * v2, hough, size), t) for t in ts1]
+ distances = [(distance(im_l, grid, size),
+ grid, t) for grid, t in grids]
+ distances.sort(reverse=True)
+ if distances[0][0] > dist:
+ dist = distances[0][0]
+ grid = distances[0][1]
+ t = distances[0][2]
+ c, d = c + t[0] * v2, d + t[1] * v2
+ print dist
+ s *= 0.75
+ else:
+ break
+
+ grid_lines = [[l2ad(l, size) for l in grid[0]], [l2ad(l, size) for l in grid[1]]]
+ return grid, grid_lines
+
+def get_grid(a, b, c, d, hough, size):
+ l1 = hough.lines_from_list([a, b])
+ l2 = hough.lines_from_list([c, d])
+ c = intersections_from_angl_dist([l1, l2], size, get_all=True)
+ #TODO do something when a corner is outside the image
+ corners = (c[0] + c[1])
+ if len(corners) < 4:
+ print l1, l2, c
+ raise GridFittingFailedError