def intersection((a1, b1, c1), (a2, b2, c2)):
delim = float(a1 * b2 - b1 * a2)
+ if delim == 0:
+ return None
x = (b1 * c2 - c1 * b2) / delim
y = (c1 * a2 - a1 * c2) / delim
return x, y
# TODO create an intersection?
try:
yield manual.lines(map(lambda p: p.to_tuple(), [c2, c1, c3, c4]))
- except (TypeError, ZeroDivisionError):
+ except (TypeError):
pass
# the square was too small to fit 17 lines inside
# TODO define SquareTooSmallError or something
l2.points.append(p)
points = [l.points for l in new_lines1]
-
- for trial in xrange(3):
- line1, cons = ransac.estimate(points, 2, 800, Diagonal_model)
- points2 = map(lambda l: [(p if not p in cons else None) for p in l], points)
- line2, cons2 = ransac.estimate(points2, 2, 800, Diagonal_model)
- center = intersection(line1, line2)
- data = sum(points, [])
+ def dst_p(x, y):
+ x = x - size[0] / 2
+ y = y - size[1] / 2
+ return sqrt(x * x + y * y)
+
+ model = Diagonal_model(points)
+ diag_lines = ransac.ransac_multi(6, points, 2, 800, model=model)
+ diag_lines = [l[0] for l in diag_lines]
+ centers = []
+ cen_lin = []
+ for i in xrange(len(diag_lines)):
+ line1 = diag_lines[i]
+ for line2 in diag_lines[i+1:]:
+ c = intersection(line1, line2)
+ if c and dst_p(*c) < min(size) / 2:
+ cen_lin.append((line1, line2, c))
+ centers.append(c)
+
+ if show_all:
+ import matplotlib.pyplot as pyplot
+ import Image
+
+ def plot_line_g((a, b, c), max_x):
+ find_y = lambda x: - (c + a * x) / b
+ pyplot.plot([0, max_x], [find_y(0), find_y(max_x)], color='b')
+
+ fig = pyplot.figure(figsize=(8, 6))
+ for l in diag_lines:
+ plot_line_g(l, size[0])
+ pyplot.scatter(*zip(*sum(points, [])))
+ pyplot.scatter(*zip(*centers), color='r')
+ pyplot.xlim(0, size[0])
+ pyplot.ylim(0, size[1])
+ pyplot.gca().invert_yaxis()
+ fig.canvas.draw()
+ size_f = fig.canvas.get_width_height()
+ buff = fig.canvas.tostring_rgb()
+ image_p = Image.fromstring('RGB', size_f, buff, 'raw')
+ do_something(image_p, "finding diagonals")
+
+ data = sum(points, [])
+ # TODO what if lines are missing?
+ sc = float("inf")
+ grid = None
+ for (line1, line2, c) in cen_lin:
diag1 = Line(line1)
diag1.points = ransac.filter_near(data, diag1, 2)
diag2 = Line(line2)
diag2.points = ransac.filter_near(data, diag2, 2)
- if show_all:
- import matplotlib.pyplot as pyplot
- import Image
-
- def plot_line_g((a, b, c), max_x):
- find_y = lambda x: - (c + a * x) / b
- pyplot.plot([0, max_x], [find_y(0), find_y(max_x)], color='b')
-
- fig = pyplot.figure(figsize=(8, 6))
- plot_line_g(diag1, size[0])
- plot_line_g(diag2, size[0])
- pyplot.scatter(*zip(*sum(points, [])))
- pyplot.scatter([center[0]], [center[1]], color='r')
- pyplot.xlim(0, size[0])
- pyplot.ylim(0, size[1])
- pyplot.gca().invert_yaxis()
- fig.canvas.draw()
- size_f = fig.canvas.get_width_height()
- buff = fig.canvas.tostring_rgb()
- image_p = Image.fromstring('RGB', size_f, buff, 'raw')
- do_something(image_p, "finding diagonal")
-
grids = list(gen_corners(diag1, diag2))
try:
- sc, grid = min(map(lambda g: (score(sum(g, []), data), g), grids))
- break
+ new_sc, new_grid = min(map(lambda g: (score(sum(g, []), data), g), grids))
+ if new_sc < sc:
+ sc, grid = new_sc, new_grid
except ValueError:
pass
- else:
+ if not grid:
raise GridFittingFailedError
grid_lines = [[l2ad(l, size) for l in grid[0]],