X-Git-Url: http://git.tomasm.cz/imago.git/blobdiff_plain/ed2f10b265485040197402bbd5dbe0dd6058cb11..be8e99bf1ebe4006580e5c4e775afcc8d7c003b5:/src/gridf3.py diff --git a/src/gridf3.py b/src/gridf3.py index 693b8ee..e1b8c9f 100644 --- a/src/gridf3.py +++ b/src/gridf3.py @@ -73,6 +73,8 @@ class Diagonal_model: def intersection((a1, b1, c1), (a2, b2, c2)): delim = float(a1 * b2 - b1 * a2) + if delim == 0: + return None x = (b1 * c2 - c1 * b2) / delim y = (c1 * a2 - a1 * c2) / delim return x, y @@ -139,7 +141,7 @@ def gen_corners(d1, d2): # TODO create an intersection? try: yield manual.lines(map(lambda p: p.to_tuple(), [c2, c1, c3, c4])) - except (TypeError, ZeroDivisionError): + except (TypeError): pass # the square was too small to fit 17 lines inside # TODO define SquareTooSmallError or something @@ -170,49 +172,66 @@ def find(lines, size, l1, l2, bounds, hough, show_all, do_something, logger): l2.points.append(p) points = [l.points for l in new_lines1] - - for trial in xrange(3): - line1, cons = ransac.estimate(points, 2, 800, Diagonal_model) - points2 = map(lambda l: [(p if not p in cons else None) for p in l], points) - line2, cons2 = ransac.estimate(points2, 2, 800, Diagonal_model) - center = intersection(line1, line2) - data = sum(points, []) + def dst_p(x, y): + x = x - size[0] / 2 + y = y - size[1] / 2 + return sqrt(x * x + y * y) + + model = Diagonal_model(points) + diag_lines = ransac.ransac_multi(6, points, 2, 800, model=model) + diag_lines = [l[0] for l in diag_lines] + centers = [] + cen_lin = [] + for i in xrange(len(diag_lines)): + line1 = diag_lines[i] + for line2 in diag_lines[i+1:]: + c = intersection(line1, line2) + if c and dst_p(*c) < min(size) / 2: + cen_lin.append((line1, line2, c)) + centers.append(c) + + if show_all: + import matplotlib.pyplot as pyplot + import Image + + def plot_line_g((a, b, c), max_x): + find_y = lambda x: - (c + a * x) / b + pyplot.plot([0, max_x], [find_y(0), find_y(max_x)], color='b') + + fig = pyplot.figure(figsize=(8, 6)) + for l in diag_lines: + plot_line_g(l, size[0]) + pyplot.scatter(*zip(*sum(points, []))) + pyplot.scatter(*zip(*centers), color='r') + pyplot.xlim(0, size[0]) + pyplot.ylim(0, size[1]) + pyplot.gca().invert_yaxis() + fig.canvas.draw() + size_f = fig.canvas.get_width_height() + buff = fig.canvas.tostring_rgb() + image_p = Image.fromstring('RGB', size_f, buff, 'raw') + do_something(image_p, "finding diagonals") + + data = sum(points, []) + # TODO what if lines are missing? + sc = float("inf") + grid = None + for (line1, line2, c) in cen_lin: diag1 = Line(line1) diag1.points = ransac.filter_near(data, diag1, 2) diag2 = Line(line2) diag2.points = ransac.filter_near(data, diag2, 2) - if show_all: - import matplotlib.pyplot as pyplot - import Image - - def plot_line_g((a, b, c), max_x): - find_y = lambda x: - (c + a * x) / b - pyplot.plot([0, max_x], [find_y(0), find_y(max_x)], color='b') - - fig = pyplot.figure(figsize=(8, 6)) - plot_line_g(diag1, size[0]) - plot_line_g(diag2, size[0]) - pyplot.scatter(*zip(*sum(points, []))) - pyplot.scatter([center[0]], [center[1]], color='r') - pyplot.xlim(0, size[0]) - pyplot.ylim(0, size[1]) - pyplot.gca().invert_yaxis() - fig.canvas.draw() - size_f = fig.canvas.get_width_height() - buff = fig.canvas.tostring_rgb() - image_p = Image.fromstring('RGB', size_f, buff, 'raw') - do_something(image_p, "finding diagonal") - grids = list(gen_corners(diag1, diag2)) try: - sc, grid = min(map(lambda g: (score(sum(g, []), data), g), grids)) - break + new_sc, new_grid = min(map(lambda g: (score(sum(g, []), data), g), grids)) + if new_sc < sc: + sc, grid = new_sc, new_grid except ValueError: pass - else: + if not grid: raise GridFittingFailedError grid_lines = [[l2ad(l, size) for l in grid[0]],