1 """Imago intersections module."""
3 from math import cos, tan, pi
4 from operator import itemgetter
15 """Return normalized line."""
17 line = line[0] + pi, - line[1]
21 """Return lines sorted by distance."""
22 l_max = max(l[0] for l in lines)
23 l_min = min(l[0] for l in lines)
24 if l_max - l_min > (3. / 4) * pi:
25 lines = [dst(l) for l in lines]
26 lines.sort(key=itemgetter(1))
29 def b_intersects(image, lines, show_all, do_something, logger):
30 """Compute intersections."""
31 # TODO refactor show_all, do_something
32 # TODO refactor this into smaller functions
33 logger("finding the stones")
34 lines = [dst_sort(l) for l in lines]
35 an0 = (sum([l[0] for l in lines[0]]) / len(lines[0]) - pi / 2)
36 an1 = (sum([l[0] for l in lines[1]]) / len(lines[1]) - pi / 2)
38 lines = [lines[1], lines[0]]
40 intersections = intersections_from_angl_dist(lines, image.size)
43 image_g = image.copy()
44 draw = ImageDraw.Draw(image_g)
45 for line in intersections:
47 draw.point((x , y), fill=(120, 255, 120))
48 do_something(image_g, "intersections")
52 def board(image, intersections, show_all, do_something, logger):
53 """Find stone colors and return board situation."""
55 # image_c = filters.color_enhance(image)
57 # do_something(image_c, "white balance")
60 image_l = image_c.load()
62 new_image = Image.new('RGB', (19 * 7, 19 * 7))
63 image_nl = new_image.load()
64 new_image2 = Image.new('L', (19 * 7, 19 * 7))
65 image_nll = new_image2.load()
67 for line in intersections:
70 for xx in [-3,-2,-1,0,1,2,3]:
71 for yy in [-3,-2,-1,0,1,2,3]:
73 image_nl[x + xx, y + yy] = image_l[xi + xx, yi + yy]
76 for xx in [-2,-1,0,1,2]:
77 for yy in [-2,-1,0,1,2]:
81 luma = lambda ((r,g,b)): colorsys.rgb_to_hls(r / 255., g /
84 image_nll[x + xx, y + yy] = (luma(image_l[z, w]) * (-8) +
85 luma(image_l[z - 1, w - 1]) +
86 luma(image_l[z - 1, w]) +
87 luma(image_l[z - 1, w + 1]) +
88 luma(image_l[z, w - 1]) +
89 luma(image_l[z, w + 1]) +
90 luma(image_l[z + 1, w - 1]) +
91 luma(image_l[z + 1, w]) +
92 luma(image_l[z + 1, w + 1])) * 255
97 do_something(new_image, "intersections")
98 do_something(new_image2, "intersections")
103 for line in intersections:
104 board_raw.append([stone_color_raw(image_c, intersection) for intersection in
106 board_raw = sum(board_raw, [])
108 ### Show color distribution
111 import matplotlib.pyplot as pyplot
113 fig = pyplot.figure(figsize=(8, 6))
114 luma = [s[0] for s in board_raw]
115 saturation = [s[1] for s in board_raw]
116 pyplot.scatter(luma, saturation,
117 color=[s[2] for s in board_raw])
121 size = fig.canvas.get_width_height()
122 buff = fig.canvas.tostring_rgb()
123 image_p = Image.fromstring('RGB', size, buff, 'raw')
124 do_something(image_p, "color distribution")
126 #max_s0 = max(s[0] for s in board_raw)
127 #min_s0 = min(s[0] for s in board_raw)
128 #norm_s0 = lambda x: (x - min_s0) / (max_s0 - min_s0)
129 #max_s1 = max(s[1] for s in board_raw)
130 #min_s1 = min(s[1] for s in board_raw)
131 #norm_s1 = lambda x: (x - min_s1) / (max_s1 - min_s1)
132 #max_s1 = max(s[1] for s in board_raw)
133 #min_s1 = min(s[1] for s in board_raw)
134 #norm_s1 = lambda x: (x - min_s1) / (max_s1 - min_s1)
135 #color_data = [(norm_s0(s[0]), norm_s1(s[1])) for s in board_raw]
136 color_data = [(s[0], s[1],s[4]) for s in board_raw]
138 clusters, score = k_means.cluster(3, 3,zip(color_data, range(len(color_data))),
139 [[0., 0.5,0.0], [0.5, 0.5, 0.], [1., 0.5, 0.]])
140 # clusters1, score1 = k_means.cluster(1, 2,zip(color_data, range(len(color_data))),
142 # clusters2, score2 = k_means.cluster(2, 2,zip(color_data, range(len(color_data))),
143 # [[0., 0.5], [0.75, 0.5]])
145 # print >> sys.stderr, score1, score2, score
148 fig = pyplot.figure(figsize=(8, 6))
149 pyplot.scatter([d[0][0] for d in clusters[0]], [d[0][1] for d in clusters[0]],
151 pyplot.scatter([d[0][0] for d in clusters[1]], [d[0][1] for d in clusters[1]],
153 pyplot.scatter([d[0][0] for d in clusters[2]], [d[0][1] for d in clusters[2]],
158 size = fig.canvas.get_width_height()
159 buff = fig.canvas.tostring_rgb()
160 image_p = Image.fromstring('RGB', size, buff, 'raw')
161 do_something(image_p, "color clustering")
163 clusters[0] = [(p[1], 'B') for p in clusters[0]]
164 clusters[1] = [(p[1], '.') for p in clusters[1]]
165 clusters[2] = [(p[1], 'W') for p in clusters[2]]
167 board_rl = sum(clusters, [])
169 board_rg = (p[1] for p in board_rl)
173 #TODO 19 should be a size parameter
177 board_r.append(board_rg.next())
178 except StopIteration:
181 return output.Board(19, board_r)
183 def mean_luma(cluster):
184 """Return mean luminanace of the *cluster* of points."""
185 return sum(c[0][0] for c in cluster) / float(len(cluster))
187 def to_general(line, size):
189 (x1, y1), (x2, y2) = linef.line_from_angl_dist(line, size)
190 return (y2 - y1, x1 - x2, x2 * y1 - x1 * y2)
192 def intersection(l1, l2):
195 delim = float(a1 * b2 - b1 * a2)
196 x = (b1 * c2 - c1 * b2) / delim
197 y = (c1 * a2 - a1 * c2) / delim
200 # TODO remove the parameter get_all
201 def intersections_from_angl_dist(lines, size, get_all=True):
202 """Take grid-lines and size of the image. Return intersections."""
203 lines0 = map(lambda l: to_general(l, size), lines[0])
204 lines1 = map(lambda l: to_general(l, size), lines[1])
209 line.append(intersection(l1, l2))
210 intersections.append(line)
213 def rgb2lumsat(color):
214 """Convert RGB to luminance and HSI model saturation."""
216 luma = (0.30 * r + 0.59 * g + 0.11 * b) / 255.0
217 max_diff = max(color) - min(color)
221 saturation = 1. - ((3. * min(color)) / sum(color))
222 return luma, saturation
225 #TODO comment (or delete maybe?)
228 return (lst[len_lst / 2] + lst[len_lst / 2 + 1]) / 2.0
230 return lst[len_lst / 2]
232 def stone_color_raw(image, (x, y)):
233 """Given image and coordinates, return stone color."""
236 for i in range(-size, size + 1):
237 for j in range(-size, size + 1):
239 points.append(image.getpixel((x + i, y + j)))
242 norm = float(len(points))
244 return 0, 0, (0, 0, 0) #TODO trow exception here
245 norm = float(norm*255)
246 color = (sum(p[0] for p in points) / norm,
247 sum(p[1] for p in points) / norm,
248 sum(p[2] for p in points) / norm)
249 hue, luma, saturation = colorsys.rgb_to_hls(*color)
250 color = colorsys.hls_to_rgb(hue, 0.5, 1.)
253 image_l = image.load()
254 for xx in [-2,-1,0,1,2]:
255 for yy in [-2,-1,0,1,2]:
259 lumal = lambda ((r,g,b)): colorsys.rgb_to_hls(r / 255., g /
262 der += (lumal(image_l[z, w]) * (-8) +
263 lumal(image_l[z - 1, w - 1]) +
264 lumal(image_l[z - 1, w]) +
265 lumal(image_l[z - 1, w + 1]) +
266 lumal(image_l[z, w - 1]) +
267 lumal(image_l[z, w + 1]) +
268 lumal(image_l[z + 1, w - 1]) +
269 lumal(image_l[z + 1, w]) +
270 lumal(image_l[z + 1, w + 1]))
274 der = max(der / 36., 0)
275 return luma, saturation, color, hue, der