1 """RANSAC estimation."""
7 def initial_estimate(data):
8 return random.sample(data, 2)
10 def points_to_line((x1, y1), (x2, y2)):
11 return (y2 - y1, x1 - x2, x2 * y1 - x1 * y2)
13 def filter_near(data, line, distance):
15 dst = lambda (x, y): abs(a * x + b * y + c) / sqrt(a*a+b*b)
16 is_near = lambda p: dst(p) <= distance
17 return [p for p in data if is_near(p)]
19 def least_squares(data):
20 x = NP.matrix([(a, 1) for (a, b) in data])
22 y = NP.matrix([[b] for (a, b) in data])
23 [a,c] = NP.dot(NP.linalg.inv(NP.dot(xt, x)), xt).dot(y).flat
28 return points_to_line(*data)
30 return least_squares(data)
32 def iterate(data, distance):
34 consensual = initial_estimate(data)
35 while (len(consensual) > consensus):
36 consensus = len(consensual)
37 model = get_model(consensual)
38 consensual = filter_near(data, model, distance)
39 return consensus, model
41 def estimate(data, dist, k):
44 for i in xrange(0, k):
45 new, new_model = iterate(data, dist)