5 def cluster(k, d, data, i_centers=None):
6 borders = [(min(p[0][i] for p in data), max(p[0][i] for p in data))
9 old_centers = i_centers
11 old_centers = [[(h - l) * random.random() + l for (l, h) in borders]
13 clusters, centers = next_step(old_centers, data)
14 while delta(old_centers, centers) > 0:
16 clusters, centers = next_step(old_centers, data)
20 def next_step(centers, data):
21 clusters = [[] for _ in centers]
23 clusters[nearest(centers, point)].append(point)
24 centers = [centroid(c) for c in clusters]
25 return clusters, centers
27 def nearest(centers, point):
28 d, i = min(((sum((p - c) ** 2 for (p, c) in zip(point[0], center)) ** 0.5 ,
29 index) if center else (float('inf'), len(centers)))
30 for (index, center) in enumerate(centers))
33 def centroid(cluster):
34 l = float(len(cluster))
36 d = len(cluster[0][0]) #TODO empty cluster error
39 return [sum(c[0][i] for c in cluster) / l for i in range(d)]
42 return sum( (sum(abs(cc1 - cc2) for (cc1, cc2) in zip (ccc1, ccc2)) if ccc2
43 else 0.) for (ccc1, ccc2) in zip(c1, c2))