c7f8e2bd1af53732d6eb1873ced0b8cf49431818
[imago.git] / manual.py
1 """Manual grid selection module"""
2
3 import pygame
4 import Image, ImageDraw
5 from math import atan, sin, cos, pi
6
7 class UserQuitError(Exception):
8     pass
9
10 class Screen:
11     def __init__(self, res):
12         pygame.init()
13         pygame.display.set_mode(res)
14         pygame.display.set_caption("Go image capture")
15         self._screen = pygame.display.get_surface()
16
17     def display_picture(self, im):
18         pg_img = pygame.image.frombuffer(im.tostring(), im.size, im.mode)
19         self._screen.blit(pg_img, (0,0))
20         pygame.display.flip()
21
22 def find_lines(im_orig):
23
24     im = im_orig.copy()
25
26     screen = Screen(im.size)
27
28     done = False
29     clock = pygame.time.Clock()
30     draw = ImageDraw.Draw(im)
31     hoshi = lambda c: draw.ellipse((c[0] - 1, c[1] - 1, c[0] + 1, c[1] + 1),
32                  fill=(255, 64, 64))
33     corners = []
34     color=(64, 64, 255)
35     line_width = 1
36     lines_r = []
37
38     while not done:
39         for event in pygame.event.get():
40             if event.type == pygame.QUIT or event.type == pygame.KEYDOWN:
41                 pygame.quit()
42                 if len(corners) == 4:
43                     return lines_r
44                 else:
45                     raise UserQuitError 
46             if event.type == pygame.MOUSEBUTTONDOWN:
47                 if len(corners) >= 4: 
48                     corners = []
49                     im = im_orig.copy()
50                     draw = ImageDraw.Draw(im)
51
52                 if len(corners) < 4:
53                     corners.append(pygame.mouse.get_pos())
54                     draw.point(corners[:-1], fill=color)
55                     if len(corners) == 4:
56                         draw.line((corners[0], corners[1]), fill=color,
57                                   width=line_width)
58                         draw.line((corners[1], corners[2]), fill=color,
59                                   width=line_width)
60                         draw.line((corners[2], corners[3]), fill=color,
61                                   width=line_width)
62                         draw.line((corners[3], corners[0]), fill=color,
63                                   width=line_width)
64                         l_vert = lines(corners, 0)
65                         for l in l_vert:
66                             draw.line(l, fill=color, width=line_width)
67                         l_hor = lines(corners[1:4] + [corners[0]], 0)
68                         for l in l_hor:
69                             draw.line(l, fill=color, width=line_width)
70                         l_vert += [(corners[0], corners[3]),
71                                    (corners[1], corners[2])]
72                         l_hor += [(corners[0], corners[1]),
73                                    (corners[2], corners[3])]
74                         l_vert.sort()
75                         l_hor.sort()
76                         for i in [3, 9, 15]:
77                             for j in [3, 9, 15]:
78                                 hoshi(intersection(line(l_vert[i][0], l_vert[i][1]),
79                                                    line(l_hor[j][0], l_hor[j][1])))
80                         lines_r = [[l2ad(l[0], l[1], im.size) for l in l_vert], 
81                                    [l2ad(l[0], l[1], im.size) for l in l_hor]]
82
83         screen.display_picture(im)
84         clock.tick(15)
85
86 def lines(corners, n):
87     if n == 0:
88         x = half_line(corners)
89         return (lines([corners[0], x[0], x[1], corners[3]], n + 1) + [x] + 
90                 lines([x[0], corners[1], corners[2], x[1]], n + 1))
91     else:
92         x = half_line(corners)
93         c = intersection(line(x[0], corners[2]), line(corners[1], corners[3]))
94         d = intersection(line(corners[0], corners[3]), line(corners[1], corners[2]))
95         l = (intersection(line(corners[0], corners[1]), line(c,d)),
96              intersection(line(corners[2], corners[3]), line(c,d)))
97         l2 = half_line([corners[0], l[0], l[1], corners[3]])
98         if n == 1:
99             return ([l, l2] + lines([l[0], l2[0], l2[1], l[1]], 2)
100                     + lines([corners[0], l2[0], l2[1], corners[3]], 2)
101                     + lines([l[0], corners[1], corners[2], l[1]], 2))
102         if n == 2:
103             return [l, l2]
104
105
106 def half_line(corners):
107     c = center(corners)
108     d = intersection(line(corners[0], corners[3]), line(corners[1], corners[2]))
109     if d:
110         l = line(c, d)
111     else:
112         l = line(c, (c[0] + corners[0][0] - corners[3][0], 
113                      c[1] + corners[0][1] - corners[3][1]))
114     p1 = intersection(l, line(corners[0], corners[1]))
115     p2 = intersection(l, line(corners[2], corners[3]))
116     return (p1, p2)
117
118
119 def center(corners):
120     return intersection(line(corners[0], corners[2]), 
121                         line(corners[1], corners[3]))
122 def line(x, y):
123     a = x[1] - y[1]
124     b = y[0] - x[0]
125     c = a * y[0] + b * y[1]
126     return (a, b, c)
127
128 def intersection(p, q):
129     det = p[0] * q[1] - p[1] * q[0]
130     if det == 0:
131         return None
132     return (int(round(float(q[1] * p[2] - p[1] * q[2]) / det)), 
133             int(round(float(p[0] * q[2] - q[0] * p[2]) / det)))
134
135 def l2ad(a, b, size):
136     if (a[0] - b[0]) == 0:
137         angle = pi / 2
138     else:
139         q = float(a[1] - b[1]) / (a[0] - b[0])
140         angle = atan(q)
141
142     if angle < 0:
143         angle += pi
144     if angle > pi:
145         angle -= pi
146
147     distance = (((a[0] - (size[0] / 2)) * sin(angle)) + 
148                 ((a[1] - (size[1] / 2)) * - cos(angle)))
149     return (angle, distance)