1 """Imago intersections module."""
3 from math import cos, tan, pi
4 from operator import itemgetter
13 """Return normalized line."""
15 line = line[0] + pi, - line[1]
19 """Return lines sorted by distance."""
20 l_max = max(l[0] for l in lines)
21 l_min = min(l[0] for l in lines)
22 if l_max - l_min > (3. / 4) * pi:
23 lines = [dst(l) for l in lines]
24 lines.sort(key=itemgetter(1))
27 def board(image, lines, show_all, do_something):
28 """Compute intersections, find stone colors and return board situation."""
29 # TODO refactor show_all, do_something
30 # TODO refactor this into smaller functions
31 lines = [dst_sort(l) for l in lines]
32 intersections = intersections_from_angl_dist(lines, image.size)
35 image_g = image.copy()
36 draw = ImageDraw.Draw(image_g)
37 for line in intersections:
39 draw.point((x , y), fill=(120, 255, 120))
40 do_something(image_g, "intersections")
42 image_c = filters.color_enhance(image)
44 do_something(image_c, "white balance")
48 for line in intersections:
49 board_raw.append([stone_color_raw(image_c, intersection) for intersection in
51 board_raw = sum(board_raw, [])
53 ### Show color distribution
54 luma = [s[0] for s in board_raw]
55 saturation = [s[1] for s in board_raw]
58 import matplotlib.pyplot as pyplot
60 fig = pyplot.figure(figsize=(8, 6))
61 pyplot.scatter(luma, saturation,
69 size = fig.canvas.get_width_height()
70 buff = fig.canvas.tostring_rgb()
71 image_p = Image.fromstring('RGB', size, buff, 'raw')
72 do_something(image_p, "color distribution")
74 clusters = k_means.cluster(3, 2,zip(zip(luma, saturation), range(len(luma))),
75 [[0., 0.5], [0.5, 0.5], [1., 0.5]])
78 fig = pyplot.figure(figsize=(8, 6))
79 pyplot.scatter([d[0][0] for d in clusters[0]], [d[0][1] for d in clusters[0]],
81 pyplot.scatter([d[0][0] for d in clusters[1]], [d[0][1] for d in clusters[1]],
83 pyplot.scatter([d[0][0] for d in clusters[2]], [d[0][1] for d in clusters[2]],
88 size = fig.canvas.get_width_height()
89 buff = fig.canvas.tostring_rgb()
90 image_p = Image.fromstring('RGB', size, buff, 'raw')
91 do_something(image_p, "color clustering")
93 clusters[0] = [(p[1], 'B') for p in clusters[0]]
94 clusters[1] = [(p[1], '.') for p in clusters[1]]
95 clusters[2] = [(p[1], 'W') for p in clusters[2]]
97 board_rl = sum(clusters, [])
99 board_rg = (p[1] for p in board_rl)
103 #TODO 19 should be a size parameter
107 board_r.append(board_rg.next())
108 except StopIteration:
112 return output.Board(19, board_r)
114 def mean_luma(cluster):
115 """Return mean luma of the *cluster* of points."""
116 return sum(c[0][0] for c in cluster) / float(len(cluster))
118 def intersections_from_angl_dist(lines, size, get_all=True):
119 """Take grid-lines and size of the image. Return intersections."""
121 for (angl1, dist1) in lines[1]:
123 for (angl2, dist2) in lines[0]:
124 if abs(angl1 - angl2) > 0.4:
125 i_x = (- ((dist2 / cos(angl2)) - (dist1 / cos(angl1)))
126 / (tan(angl1) - tan(angl2)))
127 i_y = (tan(angl1) * i_x) - (dist1 / cos(angl1))
128 if get_all or (-size[0] / 2 < i_x < size[0] / 2 and
129 -size[1] / 2 < i_y < size[1] / 2):
130 line.append((int(i_x + size[0] / 2),
131 int(i_y + size[1] / 2)))
132 intersections.append(line)
135 def rgb2lumsat(color):
136 """Convert RGB to luma and HSI model saturation."""
138 luma = (0.30 * r + 0.59 * g + 0.11 * b) / 255.0
139 max_diff = max(color) - min(color)
143 saturation = 1. - ((3. * min(color)) / sum(color))
144 return luma, saturation
147 #TODO comment (or delete maybe?)
150 return (lst[len_lst / 2] + lst[len_lst / 2 + 1]) / 2.0
152 return lst[len_lst / 2]
154 def stone_color_raw(image, (x, y)):
155 """Given image and coordinates, return stone color."""
158 for i in range(-size, size + 1):
159 for j in range(-size, size + 1):
161 points.append(image.getpixel((x + i, y + j)))
164 norm = float(len(points))
166 return 0, 0, (0, 0, 0) #TODO trow exception here
167 color = (sum(p[0] for p in points) / norm,
168 sum(p[1] for p in points) / norm,
169 sum(p[2] for p in points) / norm)
170 luma, saturation = rgb2lumsat(color)
171 return luma, saturation, color