3 import Image, ImageDraw, ImageFilter
6 from manual import lines as g_grid, l2ad, intersection, line as g_line
7 from intrsc import intersections_from_angl_dist
8 from linef import line_from_angl_dist
11 class GridFittingFailedError(Exception):
14 class MyGaussianBlur(ImageFilter.Filter):
17 def __init__(self, radius=2):
19 def filter(self, image):
20 return image.gaussian_blur(self.radius)
22 def projection(point, line, vector):
23 return V(*intersection(g_line(point, point + vector.normal), g_line(*line)))
26 X, Y, im_l, a, b, c, d, s, v1, v2, k, hough, size = args
27 return [(distance(im_l,
28 get_grid(a + X[y] * s * v1,
31 size), a + X[y] * s * v1, b + Y[y] * s * v1) for y in range(2 *k)]
34 X, Y, im_l, a, b, c, d, s, v1, v2, k, hough, size = args
35 return [(distance(im_l,
36 get_grid(a, b, c + X[y] * s * v2,
39 size), c + X[y] * s * v2, d + Y[y] * s * v2) for y in range(2 *k)]
41 def find(lines, size, l1, l2, bounds, hough, do_something, im_h):
42 a, b, c, d = [V(*a) for a in bounds]
43 l1 = line_from_angl_dist(l1, size)
44 l2 = line_from_angl_dist(l2, size)
45 v1 = V(*l1[0]) - V(*l1[1])
46 v2 = V(*l2[0]) - V(*l2[1])
47 a = projection(a, l1, v1)
48 b = projection(b, l1, v1)
49 c = projection(c, l2, v2)
50 d = projection(d, l2, v2)
52 im_l = Image.new('L', size)
53 dr_l = ImageDraw.Draw(im_l)
54 for line in sum(lines, []):
55 dr_l.line(line_from_angl_dist(line, size), width=1, fill=255)
56 #im_l = im_l.filter(MyGaussianBlur(radius=30))
57 #GaussianBlur is undocumented class, may not work in future versions of PIL
58 #im_l = im_l.tostring()
59 im_l = im_h.tostring() # hocus pocus
61 #from gridf_analyzer import error_surface
62 #error_surface(im_l, a, b, c, d, hough, size, v1 ,v2)
64 grid = get_grid(a, b, c, d, hough, size)
65 dist = distance(im_l, grid, size)
67 #let's try the bruteforce aproach:
71 for i in range(-k, k):
72 X.append(range(-k, k))
75 pool = multiprocessing.Pool(None)
77 tasks = [(X[x], Y[x], im_l, a, b, c, d, s, v1, v2, k, hough, size) for x in xrange(0, 2 * k)]
80 opt_ab = pool.map(job_br1, tasks, 1)
81 opt_cd = pool.map(job_br2, tasks, 1)
82 an, bn, cn, dn = 4 * [0]
95 #print time.time() - start
96 grid = get_grid(a, b, c, d, hough, size)
97 grid_lines = [[l2ad(l, size) for l in grid[0]], [l2ad(l, size) for l in grid[1]]]
98 return grid, grid_lines
100 #old optimization experiments:
106 ts1 = [(s, 0), (0, s), (-s, 0), (0, -s)]
107 grids = [(get_grid(a + t[0] * v1, b + t[1] * v1,
108 c, d, hough, size), t) for t in ts1]
109 distances = [distance(im_l, grid, size) for (grid, t) in grids]
110 gradient = [(di - dist) for di in distances]
111 gradient = [gradient[0] - gradient[2], gradient[1] - gradient[3]]
112 norm = (gradient[0] ** 2 + gradient[1] ** 2) ** 0.5
113 gradient = [g / (100 * norm) for g in gradient]
114 path.append(gradient)
115 a, b = a + gradient[0] * v1, b + gradient[1] * v1
116 dist = distance(im_l, grid, size)
120 import matplotlib.pyplot as plt
121 from matplotlib import cm
124 X, Y, Z = pickle.load(open('surface250'))
126 plt.imshow(Z, cmap=cm.jet, interpolation='none',
127 origin='upper', extent=(-0.250, 0.250, -0.250, 0.250), aspect='equal')
129 plt.plot([y for (x, y) in path], [x for (x, y) in path], 'go-')
138 ts1 = [(s, 0), (-s, 0), (s, s), (-s, -s), (-s, s), (s, -s), (0, s), (0, -s)]
139 grids = [(get_grid(a, b,
140 c + t[0] * v2, d + t[1] * v2, hough, size), t) for t in ts1]
141 distances = [(distance(im_l, grid, size),
142 grid, t) for grid, t in grids]
143 distances.sort(reverse=True)
144 if distances[0][0] > dist:
145 dist = distances[0][0]
146 grid = distances[0][1]
148 c, d = c + t[0] * v2, d + t[1] * v2
154 grid_lines = [[l2ad(l, size) for l in grid[0]], [l2ad(l, size) for l in grid[1]]]
155 return grid, grid_lines
157 def get_grid(a, b, c, d, hough, size):
158 l1 = hough.lines_from_list([a, b])
159 l2 = hough.lines_from_list([c, d])
160 c = intersections_from_angl_dist([l1, l2], size, get_all=True)
161 #TODO do something when a corner is outside the image
162 corners = (c[0] + c[1])
165 raise GridFittingFailedError
166 grid = g_grid(corners)
169 def line_out(line, size):
171 if p[0] < 0 or p[0] > size[0] or p[1] < 0 or p[1] > size[1]:
176 def distance(im_l, grid, size):
177 im_g = Image.new('L', size)
178 dr_g = ImageDraw.Draw(im_g)
179 for line in grid[0] + grid[1]:
180 dr_g.line(line, width=1, fill=255)
181 if line_out(line, size):
183 #im_g = im_g.filter(MyGaussianBlur(radius=3))
184 #GaussianBlur is undocumented class, may not work in future versions of PIL
185 #im_d, distance = combine(im_l, im_g)
186 distance = pcf.combine(im_l, im_g.tostring())
192 #res = Image.new('L', fg.size)
198 for x in xrange(fg.size[0]):
199 for y in xrange(fg.size[1]):
201 #res_l[x, y] = bg_l[x, y] * fg_l[x, y]
205 #return res, float(score)/area
206 return None, float(score)/area