5 def cluster(k, d, data, i_centers=None):
6 """Find *k* clusters on *d* dimensional *data*."""
7 borders = [(min(p[0][i] for p in data), max(p[0][i] for p in data))
10 old_centers = i_centers
12 old_centers = [[(h - l) * random.random() + l for (l, h) in borders]
14 clusters, centers = next_step(old_centers, data)
15 while delta(old_centers, centers) > 0:
17 clusters, centers = next_step(old_centers, data)
21 def next_step(centers, data):
22 clusters = [[] for _ in centers]
24 clusters[nearest(centers, point)].append(point)
25 centers = [centroid(c) for c in clusters]
26 return clusters, centers
28 def nearest(centers, point):
29 d, i = min(((sum((p - c) ** 2 for (p, c) in zip(point[0], center)) ** 0.5 ,
30 index) if center else (float('inf'), len(centers)))
31 for (index, center) in enumerate(centers))
34 def centroid(cluster):
35 l = float(len(cluster))
37 d = len(cluster[0][0]) #TODO empty cluster error
40 return [sum(c[0][i] for c in cluster) / l for i in range(d)]
43 return sum((sum(abs(cc1 - cc2) for (cc1, cc2) in zip (ccc1, ccc2)) if ccc2
44 else 0.) for (ccc1, ccc2) in zip(c1, c2))