1 """RANSAC estimation."""
10 def points_to_line((x1, y1), (x2, y2)):
11 return (y2 - y1, x1 - x2, x2 * y1 - x1 * y2)
13 def filter_near(data, line, distance):
15 dst = lambda (x, y): abs(a * x + b * y + c) / sqrt(a*a+b*b)
16 is_near = lambda p: dst(p) <= distance
17 return [p for p in data if is_near(p)]
19 def least_squares(data):
20 x = NP.matrix([(a, 1) for (a, b) in data])
22 y = NP.matrix([[b] for (a, b) in data])
23 [a,c] = NP.dot(NP.linalg.inv(NP.dot(xt, x)), xt).dot(y).flat
27 def __init__(self, data):
30 def get(self, sample):
32 return points_to_line(*sample)
34 return least_squares(sample)
37 return random.sample(self.data, 2)
39 def score(self, est, dist):
43 dst = lambda (x, y): abs(a * x + b * y + c) / sqrt(a*a+b*b)
51 def iterate(model, distance):
53 consensual = model.initial()
54 estimate = model.get(consensual)
55 new_score, consensual = model.score(estimate, distance)
56 while (new_score < score):
59 estimate = model.get(consensual)
60 except NP.linalg.LinAlgError:
62 estimate = model.get(consensual)
63 new_score, consensual = model.score(estimate, distance)
64 return score, estimate, consensual
66 def estimate(data, dist, k, modelClass=Linear_model):
67 model = modelClass(data)
71 for i in xrange(0, k):
72 new, new_estimate, new_consensual = iterate(model, dist)
75 estimate = new_estimate
76 consensual = new_consensual
78 return estimate, consensual
80 def ransac_duo(data, dist, k, mk, modelClass=Linear_model):
83 model, cons = estimate(set(data) - set(cons), dist, k, modelClass)
84 return (model, cons), estimate(set(data) - set(cons), dist, k, modelClass)