import HM.Term
+-- $setup
+-- >>> import Test.QuickCheck
+-- >>> import Test.HM.Term
+
+-- |
+-- >>> print $ Lam "x" (Var "x")
+-- (λx.x)
+
+
+
braced :: String -> String
braced t = "(" ++ t ++ ")"
parseVar <|>
parseLambda
-parseTermNA :: Parser Term
-parseTermNA = parseLet <|>
+parseTermNoApp :: Parser Term
+parseTermNoApp = parseLet <|>
parseVar <|>
parseLambda
-parseTypeAndTermNA :: Parser TypedTerm
-parseTypeAndTermNA = do
- term <- parseTermNA
+parseTypeAndTerm :: Parser Term -> Parser TypedTerm
+parseTypeAndTerm p = do
+ term <- p
string " :: "
tp <- parseTypeScheme
return $! TTerm term tp
-parseTypeAndTerm :: Parser TypedTerm
-parseTypeAndTerm = do
- term <- parseTerm
- string " :: "
- tp <- parseTypeScheme
- return $! TTerm term tp
-parseTypedTermNA :: Parser TypedTerm
-parseTypedTermNA = parseBraces <|>
- parseTypeAndTermNA <|>
- (NTTerm <$> parseTerm)
+parseTypedTermNoApp :: Parser TypedTerm
+parseTypedTermNoApp = parseBraces parseTypedTerm <|>
+ parseTypeAndTerm parseTermNoApp <|>
+ (NTTerm <$> parseTermNoApp)
parseTypedTerm :: Parser TypedTerm
-parseTypedTerm = parseBraces <|>
- parseTypeAndTerm <|>
- (NTTerm <$> parseTerm)
+parseTypedTerm = parseBraces parseTypedTerm <|>
+ parseTypeAndTerm parseTerm <|>
+ (NTTerm <$> parseTerm)
parseType :: Parser Type
-parseType = parsePrimitive <|>
- parseTypeVar <|>
- parseTypeFunction
+parseType = parseBraces parseType <|>
+ parseTypeFunction <|>
+ parsePrimitive <|>
+ parseTypeVar
parsePrimitive :: Parser Type
parsePrimitive = do
parseTypeVar :: Parser Type
parseTypeVar = do
- x <- many1 $ satisfy isAsciiLower
+ x <- many1 $ satisfy isAsciiLower
return $! TypeVar x
parseTypeFunction :: Parser Type
parseTypeFunction = do
- a <- parseType
+ a <- parseBraces parseType <|> parsePrimitive <|> parseTypeVar
string " -> "
b <- parseType
return $! TypeFunction a b
parseTypeScheme :: Parser TypeScheme
-parseTypeScheme = parseForAll <|>
+parseTypeScheme = parseBraces parseTypeScheme <|>
+ parseForAll <|>
(TScheme <$> parseType)
parseForAll :: Parser TypeScheme
parseForAll = do
string "FORALL "
(TypeVar x) <- parseTypeVar
- string "."
+ string ": "
t <- parseTypeScheme
return $! TSForAll x t
-parseBraces :: Parser TypedTerm
-parseBraces = do
+parseBraces :: Parser a -> Parser a
+parseBraces p = do
char '('
- t <- parseTypedTerm
+ t <- p
char ')'
return t
parseApp :: Parser Term
parseApp = do
- aps <- sepBy1 parseTypedTermNA (char ' ')
- return $! createApp aps
+ aps <- sepBy1 parseTypedTermNoApp (char ' ')
+ createApp aps
createLambda :: [Term] -> TypedTerm -> TypedTerm
createLambda (Var x : vs) t = NTTerm . Lam x $ createLambda vs t
createLambda [] t = t
createLambda _ _ = error "createLambda failed"
-createApp :: [TypedTerm] -> Term
-createApp [t,ts] = App t ts
+createApp :: [TypedTerm] -> Parser Term
+createApp [t,ts] = return $ App t ts
createApp (t:ts:tss) = createApp (NTTerm (App t ts) : tss)
-createApp [] = error "empty createApp"
+createApp _ = fail "not App"
-- |
import Lambda.Term
+import Debug.Trace
+import Lambda.Parser.Fancy ()
+
-- $setup
-- >>> import Control.Applicative
-- >>> import Lambda.Parser.Fancy
-- >>> toNormalForm Lazy 100 $ (App (App cK cI) cY)
-- Just (λx.x)
--
--- prop> within 10000000 $ (\ t u -> t == u || t == Nothing || u == Nothing) (alphaNorm <$> toNormalForm Lazy 1000 x) (alphaNorm <$> toNormalForm Eager 1000 x)
+-- prop> within 10000000 $ (\ t u -> t == u || t == Nothing || u == Nothing) (alphaNorm <$> toNormalForm Lazy 100 x) (alphaNorm <$> toNormalForm Eager 100 x)
-- inf = tRead "(\\d.a ((\\d c.c d c) (\\x y z.x z (y z)) (\\f.(\\x.f (x x)) (\\x.f (x x))) e))"
+
+toNormalFormDebug :: Strategy -> Int -> Term -> Maybe Term
+toNormalFormDebug Eager n = flip evalStateT 0 . travPost (prnt >=> cnt >=> short n >=> return . reduceStep)
+toNormalFormDebug Lazy n = flip evalStateT 0 . travPre (prnt >=> cnt >=> short n >=> return . reduceStep)
+
toNormalForm :: Strategy -> Int -> Term -> Maybe Term
toNormalForm Eager n = flip evalStateT 0 . travPost (cnt >=> short n >=> return . reduceStep)
toNormalForm Lazy n = flip evalStateT 0 . travPre (cnt >=> short n >=> return . reduceStep)
+prnt :: (Monad m) => Term -> StateT Int m Term
+prnt t = traceShow t $ return t
+
cnt :: (Monad m) => Term -> StateT Int m Term
cnt t@RedEx{} = do
modify (+ 1)
--- /dev/null
+{-# OPTIONS_GHC -fno-warn-orphans #-}
+
+module Test.Term where
+
+import Test.QuickCheck
+import Control.Applicative
+import Lambda.Parser.Fancy
+import Lambda.Term
+
+cP :: Term
+cP = tRead "(λa d c.(λa.e) b (λc.d)) ((λa.(λd.a) (λd c.b ((λa.a) a)) (a ((λa.(λd.e) ((λe.(λd b.a) (λa c.(λa a d.(λd.b (λa d.c) e) (λb b.c a (a d (λb d d e a.d (λb b.d))))) ((λb.a) c)) (d ((λc.(λd.a (λe.e)) (c d)) ((λe.b) a))) c (λa.d (e (λe.(λd c.b) a))) (c (b a)) a (λe.(λa b e b a.d) b)) ((λe.b) (λa.b)) ((λe d.b) b) e) b) ((λc c.a e) (λb.(λb.e) a)))) (λe.e) b (λd c e e c a.c)) a)"
+
+cY :: Term
+cY = tRead "λf.(λx.f (x x)) (λx.f (x x))"
+cI :: Term
+cI = tRead "λx.x"
+cK :: Term
+cK = tRead "λx y.x"
+cS :: Term
+cS = tRead "λx y z.x z (y z)"
+
+instance Arbitrary Term
+ where arbitrary = sized aTerm
+
+aVarName :: Gen String
+aVarName = oneof . map (pure . (:[])) $ ['a'..'e']
+
+aTypeName :: Gen String
+aTypeName = oneof . map (pure . (:[])) $ ['A'..'E']
+
+aComb :: Gen Term
+aComb = oneof . map pure $ [cS, cK, cI, cY]
+
+aVar :: Gen Term
+aVar = liftA Var aVarName
+
+aTerm :: Int -> Gen Term
+aTerm 0 = aVar
+aTerm n = oneof
+ [ aVar, aComb
+ , liftA2 Lam aVarName $ aTerm (n - 1)
+ , liftA2 App (aTerm (n `div` 2)) (aTerm (n `div` 2))
+ , liftA3 Let aVar (aTerm (n / 2)) (aTerm (n / 2))]
+
+--
+-- TODO: shrink Terms
+-- TODO: timed tests
+
+