import Data.Text as T
import Data.Attoparsec.Text
import Control.Applicative
+import Control.Monad.State
-- $setup
-- >>> import Test.QuickCheck
data Term = Var VarName | Lambda VarName Term | App Term Term deriving (Eq)
--- pattern RedEx x t s = App (Lambda x t) s
+pattern RedEx x t s = App (Lambda x t) s
pattern AppApp a b c = App a (App b c)
pattern EmLambda x y t = Lambda x (Lambda y t)
| otherwise = Lambda x (substitute a b t)
substitute a b (App t u) = App (substitute a b t) (substitute a b u)
+-- | Reduce λ-term
+--
+-- >>> reduce $ tRead "(\\x.x x) (g f)"
+-- g f (g f)
+
reduce :: Term -> Term
reduce (Var x) = Var x
reduce (Lambda x t) = Lambda x (reduce t)
reduce (App t u) = app (reduce t) u
where app (Lambda x v) w = reduce $ substitute x w v
app a b = App a (reduce b)
+
+data Strategy = Eager | Lazy
+
+reduceStep :: (Monad m) => Term -> m Term
+reduceStep (RedEx x s t) = return $ substitute x t s
+reduceStep t = return $ t
+
+traversPost :: (Monad m) => (Term -> m Term) -> Term -> m Term
+traversPost f (App t u) = do
+ nt <- traversPost f t
+ nu <- traversPost f u
+ f (App nt nu)
+traversPost f (Lambda x t) = f . Lambda x =<< traversPost f t
+traversPost f (Var x) = f (Var x)
+
+printT :: Term -> IO Term
+printT t = do
+ print t
+ return t
+
+toNormalForm :: Strategy -> Int -> Term -> Maybe Term
+toNormalForm Eager n = flip evalStateT 0 . traversPost (short n >=> cnt >=> reduceStep)
+
+cnt :: (Monad m) => Term -> StateT Int m Term
+cnt t@(RedEx _ _ _) = do
+ modify (+ 1)
+ return t
+cnt t = return t
+
+short :: Int -> Term -> StateT Int Maybe Term
+short max t = do
+ n <- get
+ if n == max
+ then lift Nothing
+ else return t