{-# OPTIONS_GHC -fno-warn-unused-do-bind #-}
{-# LANGUAGE PatternSynonyms #-}
-module Lambda where
+-- |
+-- Module : Lambda
+-- Copyright : Tomáš Musil 2014
+-- License : BSD-3
+--
+-- Maintainer : tomik.musil@gmail.com
+-- Stability : experimental
+--
+-- This is a toy λ-calculus implementation.
+
+module Lambda
+ ( -- * Types
+ VarName
+ , Term(..)
+ -- * Parsing terms
+ , parseTerm
+ , tRead
+ -- * Reduction
+ , reduce
+ ) where
+
import Data.Text as T
import Data.Attoparsec.Text
import Control.Applicative
-
-type VarName = String
-data Term = Var VarName | Lambda VarName Term | App Term Term deriving (Eq)
-
-pattern RedEx x t s = App (Lambda x t) s
-pattern AppApp a b c = App a (App b c)
-pattern EmLambda x y t = Lambda x (Lambda y t)
+import Control.Monad.State
-- $setup
-- >>> import Test.QuickCheck
-- >>> let aTerm n = oneof [pure (Var "x"), liftA (Lambda "x") $ aTerm (n - 1), liftA2 App (aTerm (n `div` 2)) (aTerm (n `div` 2))]
-- >>> instance Arbitrary Term where arbitrary = sized aTerm
--- | Read and show λ-terms
---
--- >>> print $ Lambda "x" (Var "x")
--- (λx.x)
---
--- prop> t == tRead (show (t :: Term))
+type VarName = String
+
+-- |
+-- >>> print $ Lambda "x" (Var "x")
+-- (λx.x)
+
+data Term = Var VarName | Lambda VarName Term | App Term Term deriving (Eq)
+
+pattern RedEx x t s = App (Lambda x t) s
+pattern AppApp a b c = App a (App b c)
+pattern EmLambda x y t = Lambda x (Lambda y t)
+
instance Show Term where
show (Var x) = x
braced :: Term -> String
braced t = "(" ++ show t ++ ")"
---instance Read Term where
+-- |
+-- prop> t == tRead (show (t :: Term))
+
tRead :: String -> Term
tRead s = case parseOnly (parseTerm <* endOfInput) (T.pack s) of
(Right t) -> t
| otherwise = Lambda x (substitute a b t)
substitute a b (App t u) = App (substitute a b t) (substitute a b u)
+-- | Reduce λ-term
+--
+-- >>> reduce $ tRead "(\\x.x x) (g f)"
+-- g f (g f)
+
reduce :: Term -> Term
reduce (Var x) = Var x
reduce (Lambda x t) = Lambda x (reduce t)
reduce (App t u) = app (reduce t) u
where app (Lambda x v) w = reduce $ substitute x w v
app a b = App a (reduce b)
+
+data Strategy = Eager | Lazy
+
+reduceStep :: (Monad m) => Term -> m Term
+reduceStep (RedEx x s t) = return $ substitute x t s
+reduceStep t = return $ t
+
+traversPost :: (Monad m) => (Term -> m Term) -> Term -> m Term
+traversPost f (App t u) = do
+ nt <- traversPost f t
+ nu <- traversPost f u
+ f (App nt nu)
+traversPost f (Lambda x t) = f . Lambda x =<< traversPost f t
+traversPost f (Var x) = f (Var x)
+
+printT :: Term -> IO Term
+printT t = do
+ print t
+ return t
+
+toNormalForm :: Strategy -> Int -> Term -> Maybe Term
+toNormalForm Eager n = flip evalStateT 0 . traversPost (short n >=> cnt >=> reduceStep)
+
+cnt :: (Monad m) => Term -> StateT Int m Term
+cnt t@(RedEx _ _ _) = do
+ modify (+ 1)
+ return t
+cnt t = return t
+
+short :: Int -> Term -> StateT Int Maybe Term
+short max t = do
+ n <- get
+ if n == max
+ then lift Nothing
+ else return t