{-# OPTIONS_GHC -fno-warn-unused-do-bind #-}
+{-# LANGUAGE PatternSynonyms #-}
-module Lambda where
+-- |
+-- Module : Lambda
+-- Copyright : Tomáš Musil 2014
+-- License : BSD-3
+--
+-- Maintainer : tomik.musil@gmail.com
+-- Stability : experimental
+--
+-- This is a toy λ-calculus implementation.
+
+module Lambda
+ ( -- * Types
+ VarName
+ , Term(..)
+ -- * Parsing terms
+ , parseTerm
+ , tRead
+ -- * Reduction
+ , reduce
+ ) where
+
import Data.Text as T
import Data.Attoparsec.Text
import Control.Applicative
+import Control.Monad.State
+
+-- $setup
+-- >>> import Test.QuickCheck
+-- >>> import Control.Applicative
+-- >>> let aTerm 0 = pure $ Var "x"
+-- >>> let aTerm n = oneof [pure (Var "x"), liftA (Lambda "x") $ aTerm (n - 1), liftA2 App (aTerm (n `div` 2)) (aTerm (n `div` 2))]
+-- >>> instance Arbitrary Term where arbitrary = sized aTerm
type VarName = String
-data Term = Var VarName | Lambda VarName Term | App Term Term
+
+-- |
+-- >>> print $ Lambda "x" (Var "x")
+-- (λx.x)
+
+data Term = Var VarName | Lambda VarName Term | App Term Term deriving (Eq)
+
+pattern RedEx x t s = App (Lambda x t) s
+pattern AppApp a b c = App a (App b c)
+pattern EmLambda x y t = Lambda x (Lambda y t)
+
instance Show Term where
show (Var x) = x
- show (Lambda x t) = "\\" ++ x ++ "." ++ show t
- show (App t r) = "(" ++ show t ++ " " ++ show r ++ ")"
+ show (EmLambda x y t) = show (Lambda (x ++ " " ++ y) t)
+ show (Lambda x t) = "(λ" ++ x ++ "." ++ show t ++ ")"
+ show (AppApp a b c) = show a ++ " " ++ braced (App b c)
+ show (App t r) = show t ++ " " ++ show r
+
+braced :: Term -> String
+braced t = "(" ++ show t ++ ")"
+
+-- |
+-- prop> t == tRead (show (t :: Term))
---instance Read Term where
tRead :: String -> Term
tRead s = case parseOnly (parseTerm <* endOfInput) (T.pack s) of
(Right t) -> t
parseLambda :: Parser Term
parseLambda = do
- char '\\'
- (Var x) <- parseVar
+ char '\\' <|> char 'λ'
+ vars <- sepBy1 parseVar (char ' ')
char '.'
t <- parseTerm
- return $! Lambda x t
+ return $! createLambda vars t
+
+createLambda :: [Term] -> Term -> Term
+createLambda (Var x : vs) t = Lambda x $ createLambda vs t
+createLambda [] t = t
+createLambda _ _ = error "createLambda failed"
parseApp :: Parser Term
parseApp = do
+ aps <- sepBy1 (parseBraces <|> parseLambda <|> parseVar) (char ' ')
+ return $! createApp aps
+
+createApp :: [Term] -> Term
+createApp [t] = t
+createApp (t:ts:tss) = createApp (App t ts : tss)
+createApp [] = error "empty createApp"
+
+parseBraces :: Parser Term
+parseBraces = do
char '('
t <- parseTerm
- char ' '
- r <- parseTerm
char ')'
- return $! App t r
+ return t
parseTerm :: Parser Term
-parseTerm = parseVar <|> parseLambda <|> parseApp
+parseTerm = parseApp <|>
+ parseBraces <|>
+ parseLambda <|>
+ parseVar
-------------------------------------------------
| otherwise = Lambda x (substitute a b t)
substitute a b (App t u) = App (substitute a b t) (substitute a b u)
+-- | Reduce λ-term
+--
+-- >>> reduce $ tRead "(\\x.x x) (g f)"
+-- g f (g f)
+
reduce :: Term -> Term
reduce (Var x) = Var x
reduce (Lambda x t) = Lambda x (reduce t)
reduce (App t u) = app (reduce t) u
where app (Lambda x v) w = reduce $ substitute x w v
app a b = App a (reduce b)
+
+data Strategy = Eager | Lazy
+
+reduceStep :: (Monad m) => Term -> m Term
+reduceStep (RedEx x s t) = return $ substitute x t s
+reduceStep t = return $ t
+
+traversPost :: (Monad m) => (Term -> m Term) -> Term -> m Term
+traversPost f (App t u) = do
+ nt <- traversPost f t
+ nu <- traversPost f u
+ f (App nt nu)
+traversPost f (Lambda x t) = f . Lambda x =<< traversPost f t
+traversPost f (Var x) = f (Var x)
+
+printT :: Term -> IO Term
+printT t = do
+ print t
+ return t
+
+toNormalForm :: Strategy -> Int -> Term -> Maybe Term
+toNormalForm Eager n = flip evalStateT 0 . traversPost (short n >=> cnt >=> reduceStep)
+
+cnt :: (Monad m) => Term -> StateT Int m Term
+cnt t@(RedEx _ _ _) = do
+ modify (+ 1)
+ return t
+cnt t = return t
+
+short :: Int -> Term -> StateT Int Maybe Term
+short max t = do
+ n <- get
+ if n == max
+ then lift Nothing
+ else return t