1 {-# OPTIONS_GHC -fno-warn-unused-do-bind #-}
2 {-# LANGUAGE PatternSynonyms #-}
6 -- Copyright : Tomáš Musil 2014
9 -- Maintainer : tomik.musil@gmail.com
10 -- Stability : experimental
12 -- This is a toy λ-calculus implementation.
28 import Data.Text as T hiding (map)
29 import Data.Attoparsec.Text
30 import Control.Applicative
31 import Control.Monad.State
34 -- >>> import Test.QuickCheck
35 -- >>> import Control.Applicative
36 -- >>> let aVarName = oneof . map (pure . (:[])) $ ['a'..'e']
37 -- >>> let aVar = liftA Var aVarName
38 -- >>> let aTerm 0 = aVar
39 -- >>> let aTerm n = oneof [aVar, liftA2 Lambda aVarName $ aTerm (n - 1), liftA2 App (aTerm (n `div` 2)) (aTerm (n `div` 2))]
40 -- >>> instance Arbitrary Term where arbitrary = sized aTerm
43 cP = tRead "(λa d c.(λa.e) b (λc.d)) ((λa.(λd.a) (λd c.b ((λa.a) a)) (a ((λa.(λd.e) ((λe.(λd b.a) (λa c.(λa a d.(λd.b (λa d.c) e) (λb b.c a (a d (λb d d e a.d (λb b.d))))) ((λb.a) c)) (d ((λc.(λd.a (λe.e)) (c d)) ((λe.b) a))) c (λa.d (e (λe.(λd c.b) a))) (c (b a)) a (λe.(λa b e b a.d) b)) ((λe.b) (λa.b)) ((λe d.b) b) e) b) ((λc c.a e) (λb.(λb.e) a)))) (λe.e) b (λd c e e c a.c)) a)"
46 cY = tRead "λf.(λx.f (x x)) (λx.f (x x))"
57 -- >>> print $ Lambda "x" (Var "x")
60 data Term = Var VarName | Lambda VarName Term | App Term Term deriving (Eq)
62 pattern RedEx x t s = App (Lambda x t) s
63 pattern AppApp a b c = App a (App b c)
64 pattern EmLambda x y t = Lambda x (Lambda y t)
67 instance Show Term where
69 show (EmLambda x y t) = show (Lambda (x ++ " " ++ y) t)
70 show (Lambda x t) = "(λ" ++ x ++ "." ++ show t ++ ")"
71 show (AppApp a b c) = show a ++ " " ++ braced (App b c)
72 show (App t r) = show t ++ " " ++ show r
74 braced :: Term -> String
75 braced t = "(" ++ show t ++ ")"
78 -- prop> t == tRead (show (t :: Term))
80 tRead :: String -> Term
81 tRead s = case parseOnly (parseTerm <* endOfInput) (T.pack s) of
85 parseVar :: Parser Term
87 x <- many1 (letter <|> digit)
90 parseLambda :: Parser Term
92 char '\\' <|> char 'λ'
93 vars <- sepBy1 parseVar (char ' ')
96 return $! createLambda vars t
98 createLambda :: [Term] -> Term -> Term
99 createLambda (Var x : vs) t = Lambda x $ createLambda vs t
100 createLambda [] t = t
101 createLambda _ _ = error "createLambda failed"
103 parseApp :: Parser Term
105 aps <- sepBy1 (parseBraces <|> parseLambda <|> parseVar) (char ' ')
106 return $! createApp aps
108 createApp :: [Term] -> Term
110 createApp (t:ts:tss) = createApp (App t ts : tss)
111 createApp [] = error "empty createApp"
113 parseBraces :: Parser Term
120 parseTerm :: Parser Term
121 parseTerm = parseApp <|>
126 -------------------------------------------------
128 isFreeIn :: VarName -> Term -> Bool
129 isFreeIn x (Var v) = x == v
130 isFreeIn x (App t u) = x `isFreeIn` t || x `isFreeIn` u
131 isFreeIn x (Lambda v t) = x /= v && x `isFreeIn` t
133 rename :: Term -> Term
134 rename (Lambda x t) = Lambda n (substitute x (Var n) t)
136 rnm v = if (v ++ "r") `isFreeIn` t then rnm (v ++ "r") else v ++ "r"
137 rename _ = error "TODO vymyslet reprezentaci, kde pujde udelat fce, ktera bere jen Lambdy"
139 substitute :: VarName -> Term -> Term -> Term
140 substitute a b (Var x) = if x == a then b else Var x
141 substitute a b (Lambda x t)
142 | x == a = Lambda x t
143 | x `isFreeIn` b = substitute a b $ rename (Lambda x t)
144 | otherwise = Lambda x (substitute a b t)
145 substitute a b (App t u) = App (substitute a b t) (substitute a b u)
149 -- >>> reduce $ tRead "(\\x.x x) (g f)"
152 reduce :: Term -> Term
153 reduce (Var x) = Var x
154 reduce (Lambda x t) = Lambda x (reduce t)
155 reduce (App t u) = app (reduce t) u
156 where app (Lambda x v) w = reduce $ substitute x w v
157 app a b = App a (reduce b)
159 data Strategy = Eager | Lazy
161 reduceStep :: (Monad m) => Term -> m Term
162 reduceStep (RedEx x s t) = return $ substitute x t s
163 reduceStep t = return $ t
165 data Z = R Term Z | L Z Term | ZL VarName Z | E
167 type TermZipper = (Term, Z, D)
169 move :: TermZipper -> TermZipper
170 move (App l r, c, Down) = (l, L c r, Down)
171 move (Lambda x t, c, Down) = (t, ZL x c, Down)
172 move (Var x, c, Down) = (Var x, c, Up)
173 move (t, L c r, Up) = (r, R t c, Down)
174 move (t, R l c, Up) = (App l t, c, Up)
175 move (t, ZL x c, Up) = (Lambda x t, c, Up)
176 move (t, E, Up) = (t, E, Up)
178 unmove :: TermZipper -> TermZipper
179 unmove (t, L c r, Down) = (App t r, c, Down)
182 travPost :: (Monad m) => (Term -> m Term) -> Term -> m Term
183 travPost fnc term = tr fnc (term, E, Down)
185 tr f (t@(RedEx _ _ _), c, Up) = do
188 tr _ (t, E, Up) = return t
189 tr f (t, c, Up) = tr f $ move (t, c, Up)
190 tr f (t, c, Down) = tr f $ move (t, c, Down)
192 travPre :: (Monad m) => (Term -> m Term) -> Term -> m Term
193 travPre fnc term = tr fnc (term, E, Down)
195 tr f (t@(RedEx _ _ _), c, Down) = do
197 tr f $ unmove (nt, c, Down)
198 tr _ (t, E, Up) = return t
199 tr f (t, c, Up) = tr f $ move (t, c, Up)
200 tr f (t, c, Down) = tr f $ move (t, c, Down)
202 printT :: Term -> IO Term
209 -- >>> toNormalForm Eager 100 cI
212 -- >>> toNormalForm Eager 100 $ App cI cI
215 -- >>> toNormalForm Eager 100 $ (App (App cK cI) cY)
218 -- >>> toNormalForm Lazy 100 $ (App (App cK cI) cY)
221 -- prop> (\ t u -> t == u || t == Nothing || u == Nothing) (toNormalForm Lazy 1000 x) (toNormalForm Eager 1000 x)
224 toNormalForm :: Strategy -> Int -> Term -> Maybe Term
225 toNormalForm Eager n = flip evalStateT 0 . travPost (cnt >=> short n >=> reduceStep)
226 toNormalForm Lazy n = flip evalStateT 0 . travPre (cnt >=> short n >=> reduceStep)
228 cnt :: (Monad m) => Term -> StateT Int m Term
229 cnt t@(RedEx _ _ _) = do
234 short :: Int -> Term -> StateT Int Maybe Term