From 9413d2f83c6bdba0d51740fc2348a3f85aeec6e2 Mon Sep 17 00:00:00 2001 From: Tomas Musil Date: Thu, 1 Nov 2012 02:09:07 +0100 Subject: [PATCH 1/1] gridf bruteforce --- gridf.py | 103 +++++++++++++++++++++++++++++++++++++++++++++++++++------------ linef.py | 2 -- 2 files changed, 84 insertions(+), 21 deletions(-) mode change 100755 => 100644 linef.py diff --git a/gridf.py b/gridf.py index 35bbc80..406285c 100644 --- a/gridf.py +++ b/gridf.py @@ -1,3 +1,5 @@ +import multiprocessing + import Image, ImageDraw, ImageFilter from manual import lines as g_grid, l2ad, intersection, line as g_line @@ -60,12 +62,27 @@ def job(args): get_grid(a + X[y] * s * v1, b + Y[y] * s * v1, c, d, hough, size), - size) for y in range(0,2 * k)] - + size) for y in range(2 * k)] + +def job_br1(args): + X, Y, im_l, a, b, c, d, s, v1, v2, k, hough, size = args + return [(distance(im_l, + get_grid(a + X[y] * s * v1, + b + Y[y] * s * v1, + c, d, hough, size), + size), a + X[y] * s * v1, b + Y[y] * s * v1) for y in range(2 *k)] + +def job_br2(args): + X, Y, im_l, a, b, c, d, s, v1, v2, k, hough, size = args + return [(distance(im_l, + get_grid(a, b, c + X[y] * s * v2, + d + Y[y] * s * v2, + hough, size), + size), c + X[y] * s * v2, d + Y[y] * s * v2) for y in range(2 *k)] + def error_surface(im_l, a, b, c, d, hough, size, v1): import matplotlib.pyplot as plt from matplotlib import cm - import multiprocessing import time import sys import pickle @@ -114,7 +131,7 @@ def find(lines, size, l1, l2, bounds, hough, do_something): dr_l = ImageDraw.Draw(im_l) for line in sum(lines, []): dr_l.line(line_from_angl_dist(line, size), width=1, fill=255) - im_l = im_l.filter(MyGaussianBlur(radius=50)) + im_l = im_l.filter(MyGaussianBlur(radius=30)) #GaussianBlur is undocumented class, may not work in future versions of PIL im_l = im_l.tostring() @@ -122,25 +139,73 @@ def find(lines, size, l1, l2, bounds, hough, do_something): grid = get_grid(a, b, c, d, hough, size) dist = distance(im_l, grid, size) + + #let's try the bruteforce aproach: + s = 0.001 + k = 50 + X, Y = [], [] + for i in range(-k, k): + X.append(range(-k, k)) + Y.append(2*k*[i]) + + tasks = [(X[x], Y[x], im_l, a, b, c, d, s, v1, v2, k, hough, size) for x in xrange(0, 2 * k)] + + pool = multiprocessing.Pool(None) + + #start = time.time() + opt_ab = pool.map(job_br1, tasks, 1) + opt_cd = pool.map(job_br2, tasks, 1) + an, bn, cn, dn = 4 * [0] + d1 = 0 + for lst in opt_ab: + for tpl in lst: + if tpl[0] > d1: + d1 = tpl[0] + an, bn = tpl[1], tpl[2] + d1 = 0 + for lst in opt_cd: + for tpl in lst: + if tpl[0] > d1: + d1 = tpl[0] + cn, dn = tpl[1], tpl[2] + #print time.time() - start + grid = get_grid(an, bn, cn, dn, hough, size) + grid_lines = [[l2ad(l, size) for l in grid[0]], [l2ad(l, size) for l in grid[1]]] + return grid, grid_lines + + #old optimization experiments: print dist - s = 0.02 - while True: - ts1 = [(s, 0), (-s, 0), (s, s), (-s, -s), (-s, s), (s, -s), (0, s), (0, -s)] + path = [(0,0)] #MNTR + s = 0.01 + for _ in range(10): + ts1 = [(s, 0), (0, s), (-s, 0), (0, -s)] grids = [(get_grid(a + t[0] * v1, b + t[1] * v1, c, d, hough, size), t) for t in ts1] - distances = [(distance(im_l, grid, size), - grid, t) for grid, t in grids] - distances.sort(reverse=True) - if distances[0][0] > dist: - dist = distances[0][0] - grid = distances[0][1] - t = distances[0][2] - a, b = a + t[0] * v1, b + t[1] * v1 - print dist - s *= 0.75 - else: - break + distances = [distance(im_l, grid, size) for (grid, t) in grids] + gradient = [(di - dist) for di in distances] + gradient = [gradient[0] - gradient[2], gradient[1] - gradient[3]] + norm = (gradient[0] ** 2 + gradient[1] ** 2) ** 0.5 + gradient = [g / (100 * norm) for g in gradient] + path.append(gradient) + a, b = a + gradient[0] * v1, b + gradient[1] * v1 + dist = distance(im_l, grid, size) + print dist + + ###MNTR + import matplotlib.pyplot as plt + from matplotlib import cm + import pickle + + X, Y, Z = pickle.load(open('surface250')) + + plt.imshow(Z, cmap=cm.jet, interpolation='none', + origin='upper', extent=(-0.250, 0.250, -0.250, 0.250), aspect='equal') + plt.colorbar() + plt.plot([y for (x, y) in path], [x for (x, y) in path], 'go-') + + plt.show() + ###MNTR print "---" diff --git a/linef.py b/linef.py old mode 100755 new mode 100644 index 37690cc..29ce2e3 --- a/linef.py +++ b/linef.py @@ -1,5 +1,3 @@ -#!/usr/bin/env python - """Go image recognition lines-finding module""" import sys -- 2.4.2