"""Imago grid-fitting module"""
import multiprocessing
+import itertools
import Image, ImageDraw, ImageFilter
return image.gaussian_blur(self.radius)
def job_br1(args):
- X, Y, im_l, a, b, c, d, s, v1, v2, k, hough, size = args
- return [(distance(im_l,
- get_grid(a + X[y] * s * v1,
- b + Y[y] * s * v1,
- c, d, hough, size),
- size), a + X[y] * s * v1, b + Y[y] * s * v1) for y in range(2 *k)]
+ im_l, v1, v2, h1, h2, x, y, dv, dh, size = args
+ v1 = (v1[0] + x * dv, v1[1] + x)
+ v2 = (v2[0] + y * dv, v2[1] + y)
+ return (distance(im_l,
+ get_grid([v1, v2], [h1, h2], size),
+ size), x, y)
def job_br2(args):
- X, Y, im_l, a, b, c, d, s, v1, v2, k, hough, size = args
- return [(distance(im_l,
- get_grid(a, b, c + X[y] * s * v2,
- d + Y[y] * s * v2,
- hough, size),
- size), c + X[y] * s * v2, d + Y[y] * s * v2) for y in range(2 *k)]
+ im_l, v1, v2, h1, h2, x, y, dv, dh, size = args
+ h1 = (h1[0] + x * dh, h1[1] + x)
+ h2 = (h2[0] + y * dh, h2[1] + y)
+ return (distance(im_l,
+ get_grid([v1, v2], [h1, h2], size),
+ size), x, y)
def find(lines, size, l1, l2, bounds, hough, do_something, im_h):
- a, b, c, d = [V(*a) for a in bounds]
l1 = line_from_angl_dist(l1, size)
l2 = line_from_angl_dist(l2, size)
v1 = V(*l1[0]) - V(*l1[1])
v2 = V(*l2[0]) - V(*l2[1])
+ a, b, c, d = [V(*a) for a in bounds]
a = projection(a, l1, v1)
b = projection(b, l1, v1)
c = projection(c, l2, v2)
d = projection(d, l2, v2)
+
+ v1, v2 = hough.lines_from_list([a, b])
+ h1, h2 = hough.lines_from_list([c, d])
+
+ delta_v = ((l1[1][1] - l1[0][1]) * hough.dt) / l1[1][0]
+ delta_h = ((l2[1][1] - l2[0][1]) * hough.dt) / l2[1][0]
im_l = Image.new('L', size)
dr_l = ImageDraw.Draw(im_l)
for line in sum(lines, []):
dr_l.line(line_from_angl_dist(line, size), width=1, fill=255)
- #im_l = im_h #hocus pocus
- im_l = im_l.filter(MyGaussianBlur(radius=2))
+ im_l = im_l.filter(MyGaussianBlur(radius=5))
#GaussianBlur is undocumented class, may not work in future versions of PIL
im_l_s = im_l.tostring()
- #from gridf_analyzer import error_surface
- #error_surface(im_l, a, b, c, d, hough, size, v1 ,v2)
-
- grid = get_grid(a, b, c, d, hough, size)
-
#let's try the bruteforce aproach:
- s = 0.001
- k = 50
- X, Y = [], []
- for i in range(-k, k):
- X.append(range(-k, k))
- Y.append(2*k*[i])
+ k = 30
pool = multiprocessing.Pool(None)
- tasks = [(X[x], Y[x], im_l_s, a, b, c, d, s,
- v1, v2, k, hough, size) for x in xrange(0, 2 * k)]
-
- import time
- start = time.time()
- opt_ab = pool.map(job_br1, tasks, 1)
- opt_cd = pool.map(job_br2, tasks, 1)
- d1 = 0
- for lst in opt_ab:
- for tpl in lst:
- if tpl[0] > d1:
- d1 = tpl[0]
- a, b = tpl[1], tpl[2]
- d1 = 0
- for lst in opt_cd:
- for tpl in lst:
- if tpl[0] > d1:
- d1 = tpl[0]
- c, d = tpl[1], tpl[2]
- print time.time() - start
- grid = get_grid(a, b, c, d, hough, size)
- grid_lines = [[l2ad(l, size) for l in grid[0]],
- [l2ad(l, size) for l in grid[1]]]
-
- ###
-
- im_t = Image.new('RGB', im_l.size, None)
- im_t_l = im_t.load()
- im_l_l = im_l.load()
- for x in xrange(im_t.size[0]):
- for y in xrange(im_t.size[1]):
- im_t_l[x, y] = (im_l_l[x, y], 0, 0)
+ tasks = [(im_l_s, v1, v2, h1, h2, x, y, delta_v, delta_h, size) for (x, y) in
+ itertools.product(xrange(-k, k), xrange(-k, k))]
- #im_t_d = ImageDraw.Draw(im_t)
- #for l in grid[0] + grid[1]:
- # im_t_d.line(l, width=1, fill=(0, 255, 0))
+ opt_v = pool.map(job_br1, tasks, 8)
+ opt_h = pool.map(job_br2, tasks, 8)
+ _, x_v, y_v = max(opt_v)
+ _, x_h, y_h = max(opt_h)
- #do_something(im_t, "lines and grid")
+ v1 = (v1[0] + x_v * delta_v, v1[1] + x_v)
+ v2 = (v2[0] + y_v * delta_v, v2[1] + y_v)
+ h1 = (h1[0] + x_h * delta_h, h1[1] + x_h)
+ h2 = (h2[0] + y_h * delta_h, h2[1] + y_h)
+ grid = get_grid([v1, v2], [h1, h2], size)
+ grid_lines = [[l2ad(l, size) for l in grid[0]],
+ [l2ad(l, size) for l in grid[1]]]
- ###
+ pool.terminate()
+ pool.join()
+
+### Show error surface
+#
+# from gridf_analyzer import error_surface
+# error_surface(k, im_l_s, v1_i, v2_i, h1_i, h2_i,
+# delta_v, delta_h, x_v, y_v, x_h, y_h, size)
+###
+
+### Show grid over lines
+#
+# im_t = Image.new('RGB', im_l.size, None)
+# im_t_l = im_t.load()
+# im_l_l = im_l.load()
+# for x in xrange(im_t.size[0]):
+# for y in xrange(im_t.size[1]):
+# im_t_l[x, y] = (im_l_l[x, y], 0, 0)
+#
+# im_t_d = ImageDraw.Draw(im_t)
+# for l in grid[0] + grid[1]:
+# im_t_d.line(l, width=1, fill=(0, 255, 0))
+#
+# do_something(im_t, "lines and grid")
+###
return grid, grid_lines
-def get_grid(a, b, c, d, hough, size):
- l1 = hough.lines_from_list([a, b])
- l2 = hough.lines_from_list([c, d])
+def get_grid(l1, l2, size):
c = intersections_from_angl_dist([l1, l2], size, get_all=True)
#TODO do something when a corner is outside the image
corners = (c[0] + c[1])
dr_g = ImageDraw.Draw(im_g)
for line in grid[0] + grid[1]:
dr_g.line(line, width=1, fill=255)
- if line_out(line, size):
- return 0
+# if line_out(line, size):
+# return 0
#im_g = im_g.filter(MyGaussianBlur(radius=3))
#GaussianBlur is undocumented class, may not work in future versions of PIL
#im_d, distance = combine(im_l, im_g)
import matplotlib.pyplot as plt
from matplotlib import cm
-import time
import sys
import pickle
import multiprocessing
import gridf
-def job1(args):
- X, Y, im_l, a, b, c, d, s, v1, k, hough, size = args
- return [gridf.distance(im_l,
- gridf.get_grid(a + X[y] * s * v1,
- b + Y[y] * s * v1,
- c, d, hough, size),
- size) for y in range(2 * k)]
-def job2(args):
- X, Y, im_l, a, b, c, d, s, v1, v2, k, hough, size = args
- return [gridf.distance(im_l,
- gridf.get_grid(a, b, c+ X[y] * s * v2,
- d + Y[y] * s * v2,
- hough, size),
- size) for y in range(2 * k)]
-
-def error_surface(im_l, a, b, c, d, hough, size, v1, v2):
+def dist1(task):
+ d, _, _ = gridf.job_br1(task)
+ return d
+
+def dist2(task):
+ d, _, _ = gridf.job_br2(task)
+ return d
+
+def error_surface(k, im_l, v1, v2, h1, h2, dv, dh, x_v, y_v, x_h, y_h, size):
X = []
Y = []
- Z = []
- s = 0.001
- k = 250
- for i in range(-k, k):
- X.append(range(-k, k))
- Y.append(2*k*[i])
-
- tasks = [(X[x], Y[x], im_l, a, b, c, d, s, v1, v2, k, hough, size) for x in xrange(0, 2 * k)]
+ Z1 = []
+ Z2 = []
pool = multiprocessing.Pool(None)
- start = time.time()
- Z = pool.map(job2, tasks, 1)
- print time.time() - start
-
- s_file = open('surface' + str(k), 'w')
- pickle.dump((X, Y, Z), s_file)
- s_file.close()
- plt.imshow(Z, cmap=cm.jet, interpolation='bicubic',
- origin='upper', extent=(-k, k, -k, k), aspect='equal')
- plt.colorbar()
+ for y in xrange(-k, k):
+ tasks = [(im_l, v1, v2, h1, h2, x, y, dv, dh, size) for x in xrange(-k, k)]
+ Z1.append(pool.map(dist1, tasks, 8))
+ Z2.append(pool.map(dist2, tasks, 8))
+
+ fig = plt.figure()
+ s1 = fig.add_subplot(121)
+ s2 = fig.add_subplot(122)
+
+ s1.imshow(Z1, cmap=cm.jet, interpolation='bicubic',
+ extent=(-k, k, -k, k), aspect='equal')
+ s1.plot([x_v], [-y_v], 'o')
+ s1.set_ylim(-k, k)
+ s1.set_xlim(-k, k)
+ s2.imshow(Z2, cmap=cm.jet, interpolation='bicubic',
+ extent=(-k, k, -k, k), aspect='equal')
+ s2.plot([x_h], [-y_h], 'o')
+ s2.set_ylim(-k, k)
+ s2.set_xlim(-k, k)
plt.show()