X-Git-Url: http://git.tomasm.cz/imago.git/blobdiff_plain/f6002686fef1bd826f3a1777998416b93d909d56..10466a9c920f1d67bf85d85af671bcb8e5fbd533:/gridf.py diff --git a/gridf.py b/gridf.py index c8f4b90..17be372 100644 --- a/gridf.py +++ b/gridf.py @@ -1,8 +1,127 @@ +import Image, ImageDraw, ImageFilter + from manual import lines as g_grid, l2ad from intrsc import intersections_from_angl_dist +from linef import line_from_angl_dist + +class GridFittingFailedError(Exception): + pass + +class MyGaussianBlur(ImageFilter.Filter): + name = "GaussianBlur" + + def __init__(self, radius=2): + self.radius = radius + def filter(self, image): + return image.gaussian_blur(self.radius) + +class V(): + def __init__(self, x, y): + self.x = x + self.y = y + + def __add__(self, other): + return V(self.x + other.x, self.y + other.y) + + def __sub__(self, other): + return V(self.x - other.x, self.y - other.y) + + def __rmul__(self, other): + return V(other * self.x, other * self.y) + + def t(self): + return (self.x, self.y) + +def find(lines, size, l1, l2, bounds, hough, do_something): + a, b, c, d = [V(*a) for a in bounds] + l1 = line_from_angl_dist(l1, size) + l2 = line_from_angl_dist(l2, size) + v1 = V(*l1[0]) - V(*l1[1]) + v2 = V(*l2[0]) - V(*l2[1]) + grid = get_grid(a, b, c, d, hough, size) + dist = distance(lines, grid, size) + print dist + + s = 0.02 + while True: + ts1 = [(s, 0), (-s, 0), (s, s), (-s, -s), (-s, s), (s, -s), (0, s), (0, -s)] + grids = [(get_grid(a + t[0] * v1, b + t[1] * v1, + c, d, hough, size), t) for t in ts1] + distances = [(distance(lines, grid, size), + grid, t) for grid, t in grids] + distances.sort(reverse=True) + if distances[0][0] > dist: + dist = distances[0][0] + grid = distances[0][1] + t = distances[0][2] + a, b = a + t[0] * v1, b + t[1] * v1 + print dist + s *= 0.75 + else: + break -def find(lines, size, l1, l2): - c = intersections_from_angl_dist(lines, size) - corners = [c[0][0], c[0][-1], c[-1][0], c[-1][-1]] + print "---" + + s = 0.02 + while True: + ts1 = [(s, 0), (-s, 0), (s, s), (-s, -s), (-s, s), (s, -s), (0, s), (0, -s)] + grids = [(get_grid(a, b, + c + t[0] * v2, d + t[1] * v2, hough, size), t) for t in ts1] + distances = [(distance(lines, grid, size), + grid, t) for grid, t in grids] + distances.sort(reverse=True) + if distances[0][0] > dist: + dist = distances[0][0] + grid = distances[0][1] + t = distances[0][2] + c, d = c + t[0] * v2, d + t[1] * v2 + print dist + s *= 0.75 + else: + break + + grid_lines = [[l2ad(l, size) for l in grid[0]], [l2ad(l, size) for l in grid[1]]] + return grid, grid_lines + +def get_grid(a, b, c, d, hough, size): + l1 = hough.lines_from_list([a.t(), b.t()]) + l2 = hough.lines_from_list([c.t(), d.t()]) + c = intersections_from_angl_dist([l1, l2], size, get_all=True) + corners = (c[0] + c[1]) + if len(corners) < 4: + print l1, l2, c + raise GridFittingFailedError grid = g_grid(corners) return grid + +def distance(lines, grid, size): + im_l = Image.new('L', size) + dr_l = ImageDraw.Draw(im_l) + for line in sum(lines, []): + dr_l.line(line_from_angl_dist(line, size), width=1, fill=255) + im_l = im_l.filter(MyGaussianBlur(radius=3)) + # GaussianBlur is undocumented class, may not work in future versions of PIL + im_g = Image.new('L', size) + dr_g = ImageDraw.Draw(im_g) + for line in grid[0] + grid[1]: + dr_g.line(line, width=1, fill=255) + im_d, distance = combine(im_l, im_g) + return distance + +def combine(bg, fg): + bg_l = bg.load() + fg_l = fg.load() + res = Image.new('L', fg.size) + res_l = res.load() + + score = 0 + area = 0 + + for x in xrange(fg.size[0]): + for y in xrange(fg.size[1]): + if fg_l[x, y]: + res_l[x, y] = bg_l[x, y] + score += bg_l[x, y] + area += 1 + + return res, float(score)/area