X-Git-Url: http://git.tomasm.cz/imago.git/blobdiff_plain/f38706a873ac4411716c32986b17f339dc68ea57..666ac3553431948203df831afe240beb3fcaec32:/src/intrsc.py?ds=inline diff --git a/src/intrsc.py b/src/intrsc.py index 546d0f2..91801fe 100644 --- a/src/intrsc.py +++ b/src/intrsc.py @@ -4,7 +4,7 @@ from math import cos, tan, pi from operator import itemgetter import colorsys -import ImageDraw +from PIL import ImageDraw import filters import k_means @@ -26,10 +26,11 @@ def dst_sort(lines): lines.sort(key=itemgetter(1)) return lines -def board(image, lines, show_all, do_something): - """Compute intersections, find stone colors and return board situation.""" +def b_intersects(image, lines, show_all, do_something, logger): + """Compute intersections.""" # TODO refactor show_all, do_something # TODO refactor this into smaller functions + logger("finding the stones") lines = [dst_sort(l) for l in lines] an0 = (sum([l[0] for l in lines[0]]) / len(lines[0]) - pi / 2) an1 = (sum([l[0] for l in lines[1]]) / len(lines[1]) - pi / 2) @@ -46,9 +47,15 @@ def board(image, lines, show_all, do_something): draw.point((x , y), fill=(120, 255, 120)) do_something(image_g, "intersections") - image_c = filters.color_enhance(image) - if show_all: - do_something(image_c, "white balance") + return intersections + +def board(image, intersections, show_all, do_something, logger): + """Find stone colors and return board situation.""" + +# image_c = filters.color_enhance(image) +# if show_all: +# do_something(image_c, "white balance") + image_c = image board_raw = [] @@ -61,7 +68,7 @@ def board(image, lines, show_all, do_something): if show_all: import matplotlib.pyplot as pyplot - import Image + from PIL import Image fig = pyplot.figure(figsize=(8, 6)) luma = [s[0] for s in board_raw] saturation = [s[1] for s in board_raw] @@ -75,20 +82,29 @@ def board(image, lines, show_all, do_something): image_p = Image.fromstring('RGB', size, buff, 'raw') do_something(image_p, "color distribution") - max_s0 = max(s[0] for s in board_raw) - min_s0 = min(s[0] for s in board_raw) - norm_s0 = lambda x: (x - min_s0) / (max_s0 - min_s0) - max_s1 = max(s[1] for s in board_raw) - min_s1 = min(s[1] for s in board_raw) - norm_s1 = lambda x: (x - min_s1) / (max_s1 - min_s1) - max_s1 = max(s[1] for s in board_raw) - min_s1 = min(s[1] for s in board_raw) - norm_s1 = lambda x: (x - min_s1) / (max_s1 - min_s1) - color_data = [(norm_s0(s[0]), norm_s1(s[1])) for s in board_raw] - - clusters = k_means.cluster(3, 2,zip(color_data, range(len(color_data))), - [[0., 0.5], [0.5, 0.5], [1., 0.5]]) - + #max_s0 = max(s[0] for s in board_raw) + #min_s0 = min(s[0] for s in board_raw) + #norm_s0 = lambda x: (x - min_s0) / (max_s0 - min_s0) + #max_s1 = max(s[1] for s in board_raw) + #min_s1 = min(s[1] for s in board_raw) + #norm_s1 = lambda x: (x - min_s1) / (max_s1 - min_s1) + #max_s1 = max(s[1] for s in board_raw) + #min_s1 = min(s[1] for s in board_raw) + #norm_s1 = lambda x: (x - min_s1) / (max_s1 - min_s1) + #color_data = [(norm_s0(s[0]), norm_s1(s[1])) for s in board_raw] + color_data = [(s[0], s[1]) for s in board_raw] + + init_x = sum(c[0] for c in color_data) / float(len(color_data)) + + clusters, score = k_means.cluster(3, 2,zip(color_data, range(len(color_data))), + [[0., 0.5], [init_x, 0.5], [1., 0.5]]) +# clusters1, score1 = k_means.cluster(1, 2,zip(color_data, range(len(color_data))), +# [[0.5, 0.5]]) +# clusters2, score2 = k_means.cluster(2, 2,zip(color_data, range(len(color_data))), +# [[0., 0.5], [0.75, 0.5]]) +# import sys +# print >> sys.stderr, score1, score2, score +# if show_all: fig = pyplot.figure(figsize=(8, 6)) pyplot.scatter([d[0][0] for d in clusters[0]], [d[0][1] for d in clusters[0]], @@ -123,7 +139,6 @@ def board(image, lines, show_all, do_something): except StopIteration: pass - return output.Board(19, board_r) def mean_luma(cluster): @@ -194,5 +209,4 @@ def stone_color_raw(image, (x, y)): sum(p[2] for p in points) / norm) hue, luma, saturation = colorsys.rgb_to_hls(*color) color = colorsys.hls_to_rgb(hue, 0.5, 1.) - print color return luma, saturation, color, hue