X-Git-Url: http://git.tomasm.cz/imago.git/blobdiff_plain/f2cbb185a9e09efb970203c376e5abcaa872c867..b1b5232a3561e92a40a26ff586ee3496b080692c:/hough.py?ds=inline diff --git a/hough.py b/hough.py index a8f64b2..0e9fe2d 100644 --- a/hough.py +++ b/hough.py @@ -2,8 +2,6 @@ from math import sin, cos, pi from PIL import Image -from commons import clear - class Hough: def __init__(self, size): self.size = size @@ -20,8 +18,6 @@ class Hough: initial_angle = self.initial_angle for x in xrange(size[0]): - clear() - print "hough transform: {0:>3}/{1}".format(x + 1, size[0]) for y in xrange(size[1]): if image_l[x, y]: # for every angle: @@ -34,7 +30,7 @@ class Hough: size[0] / 2) # column of the matrix closest to the distance column = int(round(distance)) - if column >= 0 and column < size[0]: + if 0 <= column < size[0]: matrix[column][a] += 1 new_image = Image.new('L', size) @@ -50,6 +46,26 @@ class Hough: return new_image + def lines_from_list(self, p_list): + lines = [] + for p in p_list: + lines.append(self.angle_distance(p)) + return lines + + def all_lines_h(self, image): + im_l = image.load() + lines1 = [] + for x in xrange(image.size[0] / 2): + for y in xrange(image.size[1]): + if im_l[x, y]: + lines1.append(self.angle_distance((x, y))) + lines2 = [] + for x in xrange(image.size[0] / 2, image.size[0]): + for y in xrange(image.size[1]): + if im_l[x, y]: + lines2.append(self.angle_distance((x, y))) + return [lines1, lines2] + def all_lines(self, image): im_l = image.load() lines = []