X-Git-Url: http://git.tomasm.cz/imago.git/blobdiff_plain/f1094e68978c348e13ddc4f1da0af6d481ec7cf0..be7942c3c75a64979e60b50cf76aa1000ec57413:/src/intrsc.py?ds=sidebyside diff --git a/src/intrsc.py b/src/intrsc.py index 977ad84..7455d0c 100644 --- a/src/intrsc.py +++ b/src/intrsc.py @@ -2,6 +2,7 @@ from math import cos, tan, pi from operator import itemgetter +import colorsys import ImageDraw @@ -57,18 +58,15 @@ def board(image, lines, show_all, do_something): board_raw = sum(board_raw, []) ### Show color distribution - luma = [s[0] for s in board_raw] - saturation = [s[1] for s in board_raw] if show_all: import matplotlib.pyplot as pyplot import Image fig = pyplot.figure(figsize=(8, 6)) + luma = [s[0] for s in board_raw] + saturation = [s[1] for s in board_raw] pyplot.scatter(luma, saturation, - color=[(s[2][0]/255., - s[2][1]/255., - s[2][2]/255., 1.) - for s in board_raw]) + color=[s[2] for s in board_raw]) pyplot.xlim(0,1) pyplot.ylim(0,1) fig.canvas.draw() @@ -77,7 +75,19 @@ def board(image, lines, show_all, do_something): image_p = Image.fromstring('RGB', size, buff, 'raw') do_something(image_p, "color distribution") - clusters = k_means.cluster(3, 2,zip(zip(luma, saturation), range(len(luma))), + #max_s0 = max(s[0] for s in board_raw) + #min_s0 = min(s[0] for s in board_raw) + #norm_s0 = lambda x: (x - min_s0) / (max_s0 - min_s0) + #max_s1 = max(s[1] for s in board_raw) + #min_s1 = min(s[1] for s in board_raw) + #norm_s1 = lambda x: (x - min_s1) / (max_s1 - min_s1) + #max_s1 = max(s[1] for s in board_raw) + #min_s1 = min(s[1] for s in board_raw) + #norm_s1 = lambda x: (x - min_s1) / (max_s1 - min_s1) + #color_data = [(norm_s0(s[0]), norm_s1(s[1])) for s in board_raw] + color_data = [(s[0], s[1]) for s in board_raw] + + clusters = k_means.cluster(3, 2,zip(color_data, range(len(color_data))), [[0., 0.5], [0.5, 0.5], [1., 0.5]]) if show_all: @@ -118,7 +128,7 @@ def board(image, lines, show_all, do_something): return output.Board(19, board_r) def mean_luma(cluster): - """Return mean luma of the *cluster* of points.""" + """Return mean luminanace of the *cluster* of points.""" return sum(c[0][0] for c in cluster) / float(len(cluster)) def to_general(line, size): @@ -148,7 +158,7 @@ def intersections_from_angl_dist(lines, size, get_all=True): return intersections def rgb2lumsat(color): - """Convert RGB to luma and HSI model saturation.""" + """Convert RGB to luminance and HSI model saturation.""" r, g, b = color luma = (0.30 * r + 0.59 * g + 0.11 * b) / 255.0 max_diff = max(color) - min(color) @@ -179,8 +189,10 @@ def stone_color_raw(image, (x, y)): norm = float(len(points)) if norm == 0: return 0, 0, (0, 0, 0) #TODO trow exception here + norm = float(norm*255) color = (sum(p[0] for p in points) / norm, sum(p[1] for p in points) / norm, sum(p[2] for p in points) / norm) - luma, saturation = rgb2lumsat(color) - return luma, saturation, color + hue, luma, saturation = colorsys.rgb_to_hls(*color) + color = colorsys.hls_to_rgb(hue, 0.5, 1.) + return luma, saturation, color, hue