X-Git-Url: http://git.tomasm.cz/imago.git/blobdiff_plain/e4044c7515289bb999ee98698abbe09aa6e4b517..bc8264a583025d7be3e3238aa40d4950050f7fcf:/ransac_grid.py diff --git a/ransac_grid.py b/ransac_grid.py index 3e06002..a483a9e 100644 --- a/ransac_grid.py +++ b/ransac_grid.py @@ -3,6 +3,7 @@ import matplotlib.pyplot as pyplot from math import sqrt import random import sys +import time import src.linef as linef import src.gridf as gridf @@ -10,6 +11,8 @@ from src.manual import lines as g_grid import new_geometry as gm +random.seed(12345) + def plot_line(line, c): points = linef.line_from_angl_dist(line, (520, 390)) pyplot.plot(*zip(*points), color=c) @@ -27,8 +30,29 @@ def to_general(line): def nearest(lines, point): return min(map(lambda l: dst(point, l), lines)) +def nearest2(lines, point): + return min(map(lambda l: dst(point, points_to_line(*l)), lines)) + size = (520, 390) +def generate_models(sgrid, lh): + for f in [0, 1, 2, 3, 5, 7, 8, 11, 15, 17]: + grid = gm.fill(sgrid[0], sgrid[1], lh , f) + grid = [sgrid[0]] + grid + [sgrid[1]] + for s in xrange(17 - f): + grid = [gm.expand_left(grid, lh)] + grid + yield grid + for i in xrange(17 - f): + grid = grid[1:] + grid.append(gm.expand_right(grid, lh)) + yield grid + +def score(grid, points, limit): + d = max(map(lambda l: dst((0, 0), points_to_line(*l)), grid + grid)) + if d > limit: + return 0 + return len([p for p in points if nearest2(grid, p) <= 2]) + points = pickle.load(open('edges.pickle')) lines = pickle.load(open('lines.pickle')) @@ -40,36 +64,45 @@ r_lines = pickle.load(open('r_lines.pickle')) l1, l2 = lines +lines_general = map(to_general, sum(lines, [])) +near_points = [p for p in points if nearest(lines_general, p) <= 2] + while True: - l1s = random.sample(l2, 2) + t0 = time.time() + #l1s = random.sample(l1, 2) + l1s = [l1[0], l1[-1]] l1s.sort(key=lambda l: l[1]) - corners = map(lambda l:linef.line_from_angl_dist(l, size), l1s) - middle = ((0, 195),(520, 195)) - # TODO! can I assume anything to be perspectively disorted square? - # TODO! take lower and middle and construct top - lh = (gm.intersection(corners[0], middle), gm.intersection(corners[1], middle)) - grid = gm.fill(corners[0], corners[1], lh , 3) - grid = [corners[0]] + grid + [corners[1]] - grid.append(gm.expand(grid[-2], grid[-1], ((gm.intersection(middle, grid[-2]), - (gm.intersection(middle, grid[-1])))))) - grid.append(gm.expand(grid[-2], grid[-1], ((gm.intersection(middle, grid[-2]), - (gm.intersection(middle, grid[-1])))))) + sgrid = map(lambda l:linef.line_from_angl_dist(l, size), l1s) + middle = lambda m: ((m, 0),(m, 390)) + middle = middle(gm.intersection((sgrid[0][0], sgrid[1][1]), + (sgrid[0][1], sgrid[1][0]))[0]) + lh = (gm.intersection(sgrid[0], middle), gm.intersection(sgrid[1], middle)) + sc, grid = max(map(lambda g: (score(g, points, 400), g), generate_models(sgrid, lh))) map(lambda l: pyplot.plot(*zip(*l), color='b'), grid) - - plot_line(l1s[0], 'g') + #l2s = random.sample(l2, 2) + l2s = [l2[0], l2[-1]] + l2s.sort(key=lambda l: l[1]) + sgrid = map(lambda l:linef.line_from_angl_dist(l, size), l2s) + middle = lambda m: ((0, m),(520, m)) + middle = middle(gm.intersection((sgrid[0][0], sgrid[1][1]), + (sgrid[0][1], sgrid[1][0]))[1]) + lh = (gm.intersection(sgrid[0], middle), gm.intersection(sgrid[1], middle)) + sc, grid = max(map(lambda g: (score(g, points, 530), g), generate_models(sgrid, lh))) + print time.time() - t0 + + pyplot.scatter(*zip(*near_points)) + map(lambda l: pyplot.plot(*zip(*l), color='b'), grid) + plot_line(l2s[0], 'r') + plot_line(l2s[1], 'r') + plot_line(l1s[0], 'r') plot_line(l1s[1], 'r') - pyplot.xlim(0, 520) pyplot.ylim(0, 390) pyplot.show() sys.exit() -lines_general = map(to_general, sum(lines, [])) - -near_points = [p for p in points if nearest(lines_general, p) <= 2] -pyplot.scatter(*zip(*near_points)) for l in lines[0]: