X-Git-Url: http://git.tomasm.cz/imago.git/blobdiff_plain/bad8c962c120db6ba0f6e38c9df875ab17b4bf8a..9413d2f83c6bdba0d51740fc2348a3f85aeec6e2:/gridf.py?ds=inline diff --git a/gridf.py b/gridf.py index 83a9771..406285c 100644 --- a/gridf.py +++ b/gridf.py @@ -1,8 +1,11 @@ +import multiprocessing + import Image, ImageDraw, ImageFilter from manual import lines as g_grid, l2ad, intersection, line as g_line from intrsc import intersections_from_angl_dist from linef import line_from_angl_dist +import pcf class GridFittingFailedError(Exception): pass @@ -15,7 +18,7 @@ class MyGaussianBlur(ImageFilter.Filter): def filter(self, image): return image.gaussian_blur(self.radius) -class V(): +class V(object): def __init__(self, x, y): self.x = x self.y = y @@ -29,17 +32,89 @@ class V(): def __rmul__(self, other): return V(other * self.x, other * self.y) - def t(self): - return (self.x, self.y) + def __len__(self): + return 2; + + def __getitem__(self, key): + if key == 0: + return self.x + elif key == 1: + return self.y + elif type(key) != int: + raise TypeError("V indices must be integers") + else: + raise KeyError("V index ({}) out of range".format(key)) + + def __iter__(self): + yield self.x + yield self.y + @property def normal(self): return V(-self.y, self.x) def projection(point, line, vector): - n = vector.normal() - l2 = g_line(point.t(), (point + n).t()) - return V(*intersection(l2, g_line(*line))) + return V(*intersection(g_line(point, point + vector.normal), g_line(*line))) + +def job(args): + X, Y, im_l, a, b, c, d, s, v1, k, hough, size = args + return [distance(im_l, + get_grid(a + X[y] * s * v1, + b + Y[y] * s * v1, + c, d, hough, size), + size) for y in range(2 * k)] + +def job_br1(args): + X, Y, im_l, a, b, c, d, s, v1, v2, k, hough, size = args + return [(distance(im_l, + get_grid(a + X[y] * s * v1, + b + Y[y] * s * v1, + c, d, hough, size), + size), a + X[y] * s * v1, b + Y[y] * s * v1) for y in range(2 *k)] + +def job_br2(args): + X, Y, im_l, a, b, c, d, s, v1, v2, k, hough, size = args + return [(distance(im_l, + get_grid(a, b, c + X[y] * s * v2, + d + Y[y] * s * v2, + hough, size), + size), c + X[y] * s * v2, d + Y[y] * s * v2) for y in range(2 *k)] + +def error_surface(im_l, a, b, c, d, hough, size, v1): + import matplotlib.pyplot as plt + from matplotlib import cm + import time + import sys + import pickle + + X = [] + Y = [] + Z = [] + s = 0.001 + k = 250 + for i in range(-k, k): + X.append(range(-k, k)) + Y.append(2*k*[i]) + + tasks = [(X[x], Y[x], im_l, a, b, c, d, s, v1, k, hough, size) for x in xrange(0, 2 * k)] + #everything is passed by value here; can it somehow be passed by reference? + + pool = multiprocessing.Pool(None) + start = time.time() + Z = pool.map(job, tasks, 1) + print time.time() - start + + s_file = open('surface' + str(k), 'w') + pickle.dump((X, Y, Z), s_file) + s_file.close() + plt.imshow(Z, cmap=cm.jet, interpolation='bicubic', + origin='upper', extent=(-k, k, -k, k), aspect='equal') + plt.colorbar() + + plt.show() + + sys.exit() def find(lines, size, l1, l2, bounds, hough, do_something): a, b, c, d = [V(*a) for a in bounds] @@ -51,27 +126,86 @@ def find(lines, size, l1, l2, bounds, hough, do_something): b = projection(b, l1, v1) c = projection(c, l2, v2) d = projection(d, l2, v2) + + im_l = Image.new('L', size) + dr_l = ImageDraw.Draw(im_l) + for line in sum(lines, []): + dr_l.line(line_from_angl_dist(line, size), width=1, fill=255) + im_l = im_l.filter(MyGaussianBlur(radius=30)) + #GaussianBlur is undocumented class, may not work in future versions of PIL + im_l = im_l.tostring() + + #error_surface(im_l, a, b, c, d, hough, size, v1) + grid = get_grid(a, b, c, d, hough, size) - dist = distance(lines, grid, size) - print dist + dist = distance(im_l, grid, size) - s = 0.02 - while True: - ts1 = [(s, 0), (-s, 0), (s, s), (-s, -s), (-s, s), (s, -s), (0, s), (0, -s)] + #let's try the bruteforce aproach: + s = 0.001 + k = 50 + X, Y = [], [] + for i in range(-k, k): + X.append(range(-k, k)) + Y.append(2*k*[i]) + + tasks = [(X[x], Y[x], im_l, a, b, c, d, s, v1, v2, k, hough, size) for x in xrange(0, 2 * k)] + + pool = multiprocessing.Pool(None) + + #start = time.time() + opt_ab = pool.map(job_br1, tasks, 1) + opt_cd = pool.map(job_br2, tasks, 1) + an, bn, cn, dn = 4 * [0] + d1 = 0 + for lst in opt_ab: + for tpl in lst: + if tpl[0] > d1: + d1 = tpl[0] + an, bn = tpl[1], tpl[2] + d1 = 0 + for lst in opt_cd: + for tpl in lst: + if tpl[0] > d1: + d1 = tpl[0] + cn, dn = tpl[1], tpl[2] + #print time.time() - start + grid = get_grid(an, bn, cn, dn, hough, size) + grid_lines = [[l2ad(l, size) for l in grid[0]], [l2ad(l, size) for l in grid[1]]] + return grid, grid_lines + + #old optimization experiments: + print dist + + path = [(0,0)] #MNTR + s = 0.01 + for _ in range(10): + ts1 = [(s, 0), (0, s), (-s, 0), (0, -s)] grids = [(get_grid(a + t[0] * v1, b + t[1] * v1, c, d, hough, size), t) for t in ts1] - distances = [(distance(lines, grid, size), - grid, t) for grid, t in grids] - distances.sort(reverse=True) - if distances[0][0] > dist: - dist = distances[0][0] - grid = distances[0][1] - t = distances[0][2] - a, b = a + t[0] * v1, b + t[1] * v1 - print dist - s *= 0.75 - else: - break + distances = [distance(im_l, grid, size) for (grid, t) in grids] + gradient = [(di - dist) for di in distances] + gradient = [gradient[0] - gradient[2], gradient[1] - gradient[3]] + norm = (gradient[0] ** 2 + gradient[1] ** 2) ** 0.5 + gradient = [g / (100 * norm) for g in gradient] + path.append(gradient) + a, b = a + gradient[0] * v1, b + gradient[1] * v1 + dist = distance(im_l, grid, size) + print dist + + ###MNTR + import matplotlib.pyplot as plt + from matplotlib import cm + import pickle + + X, Y, Z = pickle.load(open('surface250')) + + plt.imshow(Z, cmap=cm.jet, interpolation='none', + origin='upper', extent=(-0.250, 0.250, -0.250, 0.250), aspect='equal') + plt.colorbar() + plt.plot([y for (x, y) in path], [x for (x, y) in path], 'go-') + + plt.show() + ###MNTR print "---" @@ -80,7 +214,7 @@ def find(lines, size, l1, l2, bounds, hough, do_something): ts1 = [(s, 0), (-s, 0), (s, s), (-s, -s), (-s, s), (s, -s), (0, s), (0, -s)] grids = [(get_grid(a, b, c + t[0] * v2, d + t[1] * v2, hough, size), t) for t in ts1] - distances = [(distance(lines, grid, size), + distances = [(distance(im_l, grid, size), grid, t) for grid, t in grids] distances.sort(reverse=True) if distances[0][0] > dist: @@ -97,9 +231,10 @@ def find(lines, size, l1, l2, bounds, hough, do_something): return grid, grid_lines def get_grid(a, b, c, d, hough, size): - l1 = hough.lines_from_list([a.t(), b.t()]) - l2 = hough.lines_from_list([c.t(), d.t()]) + l1 = hough.lines_from_list([a, b]) + l2 = hough.lines_from_list([c, d]) c = intersections_from_angl_dist([l1, l2], size, get_all=True) + #TODO do something when a corner is outside the image corners = (c[0] + c[1]) if len(corners) < 4: print l1, l2, c @@ -107,26 +242,22 @@ def get_grid(a, b, c, d, hough, size): grid = g_grid(corners) return grid -def distance(lines, grid, size): - im_l = Image.new('L', size) - dr_l = ImageDraw.Draw(im_l) - for line in sum(lines, []): - dr_l.line(line_from_angl_dist(line, size), width=1, fill=255) - im_l = im_l.filter(MyGaussianBlur(radius=3)) - # GaussianBlur is undocumented class, may not work in future versions of PIL +def distance(im_l, grid, size): im_g = Image.new('L', size) dr_g = ImageDraw.Draw(im_g) for line in grid[0] + grid[1]: dr_g.line(line, width=1, fill=255) #im_g = im_g.filter(MyGaussianBlur(radius=3)) - im_d, distance = combine(im_l, im_g) + #GaussianBlur is undocumented class, may not work in future versions of PIL + #im_d, distance = combine(im_l, im_g) + distance = pcf.combine(im_l, im_g.tostring()) return distance def combine(bg, fg): bg_l = bg.load() fg_l = fg.load() - res = Image.new('L', fg.size) - res_l = res.load() + #res = Image.new('L', fg.size) + #res_l = res.load() score = 0 area = 0 @@ -134,8 +265,9 @@ def combine(bg, fg): for x in xrange(fg.size[0]): for y in xrange(fg.size[1]): if fg_l[x, y]: - res_l[x, y] = bg_l[x, y] * fg_l[x, y] + #res_l[x, y] = bg_l[x, y] * fg_l[x, y] score += bg_l[x, y] area += 1 - return res, float(score)/area + #return res, float(score)/area + return None, float(score)/area