X-Git-Url: http://git.tomasm.cz/imago.git/blobdiff_plain/a24a89991790610c9bb8754b269b376350d807e3..890c6fc05c289fa41d3db2f17037f3b7428151fb:/hough.py?ds=inline diff --git a/hough.py b/hough.py index 7ac3aac..9d44bcb 100644 --- a/hough.py +++ b/hough.py @@ -1,43 +1,80 @@ -from PIL import Image from math import sin, cos, pi -from commons import clear -def transform(image): +from PIL import Image - image_l = image.load() - size = image.size - - dt = pi / size[1] - initial_angle = (pi / 4) + (dt / 2) +class Hough: + def __init__(self, size): + self.size = size + self.dt = pi / size[1] + self.initial_angle = (pi / 4) + (self.dt / 2) - matrix = [[0]*size[1] for _ in xrange(size[0])] + def transform(self, image): + image_l = image.load() + size = image.size + + matrix = [[0]*size[1] for _ in xrange(size[0])] + + dt = self.dt + initial_angle = self.initial_angle - for x in xrange(size[0]): - clear() - print "hough transform: {0}/{1}".format(x + 1, size[0]) - for y in xrange(size[1]): - if image_l[x, y]: - # for every angle: - for a in xrange(size[1]): - # find the distance: - # distance is the dot product of vector (x, y) - centerpoint - # and a unit vector orthogonal to the angle - distance = (((x - (size[0] / 2)) * sin((dt * a) + initial_angle)) + - ((y - (size[1] / 2)) * -cos((dt * a) + initial_angle)) + - size[0] / 2) - column = int(round(distance)) # column of the matrix closest to the distance - if column >= 0 and column < size[0]: - matrix[column][a] += 1 - - new_image = Image.new('L', size) - new_image_l = new_image.load() - - minimum = min([min(m) for m in matrix]) - - maximum = max([max(m) for m in matrix]) - minimum - - for y in xrange(size[1]): for x in xrange(size[0]): - new_image_l[x, y] = (float(matrix[x][y] - minimum) / maximum) * 255 + for y in xrange(size[1]): + if image_l[x, y]: + # for every angle: + for a in xrange(size[1]): + # find the distance: + # distance is the dot product of vector (x, y) - centerpoint + # and a unit vector orthogonal to the angle + distance = (((x - (size[0] / 2)) * sin((dt * a) + initial_angle)) + + ((y - (size[1] / 2)) * -cos((dt * a) + initial_angle)) + + size[0] / 2) + # column of the matrix closest to the distance + column = int(round(distance)) + if column >= 0 and column < size[0]: + matrix[column][a] += 1 + + new_image = Image.new('L', size) + new_image_l = new_image.load() + + minimum = min([min(m) for m in matrix]) + + maximum = max([max(m) for m in matrix]) - minimum + + for y in xrange(size[1]): + for x in xrange(size[0]): + new_image_l[x, y] = (float(matrix[x][y] - minimum) / maximum) * 255 - return new_image + return new_image + + def lines_from_list(self, p_list): + lines = [] + for p in p_list: + lines.append(self.angle_distance(p)) + return lines + + def all_lines_h(self, image): + im_l = image.load() + lines1 = [] + for x in xrange(image.size[0] / 2): + for y in xrange(image.size[1]): + if im_l[x, y]: + lines1.append(self.angle_distance((x, y))) + lines2 = [] + for x in xrange(image.size[0] / 2, image.size[0]): + for y in xrange(image.size[1]): + if im_l[x, y]: + lines2.append(self.angle_distance((x, y))) + return [lines1, lines2] + + def all_lines(self, image): + im_l = image.load() + lines = [] + for x in xrange(image.size[0]): + for y in xrange(image.size[1]): + if im_l[x, y]: + lines.append(self.angle_distance((x, y))) + return lines + + def angle_distance(self, point): + return (self.dt * point[1] + self.initial_angle, point[0] - self.size[0] / 2) +