X-Git-Url: http://git.tomasm.cz/imago.git/blobdiff_plain/8d05ccd11445ae069ae14dfb95d566907546e989..24a7e923346be5e355a7d61e642fc469310444ef:/hough.py diff --git a/hough.py b/hough.py index 5fca93f..ec8058c 100644 --- a/hough.py +++ b/hough.py @@ -1,90 +1,49 @@ -from PIL import Image from math import sin, cos, pi -from commons import clear + +from PIL import Image + +import pcf class Hough: def __init__(self, size): - self.size = size + self.size = size self.dt = pi / size[1] self.initial_angle = (pi / 4) + (self.dt / 2) def transform(self, image): - image_l = image.load() - size = image.size - - matrix = [[0]*size[1] for _ in xrange(size[0])] - - dt = self.dt - initial_angle = self.initial_angle - - for x in xrange(size[0]): - clear() - print "hough transform: {0:>3}/{1}".format(x + 1, size[0]) - for y in xrange(size[1]): - if image_l[x, y]: - # for every angle: - for a in xrange(size[1]): - # find the distance: - # distance is the dot product of vector (x, y) - centerpoint - # and a unit vector orthogonal to the angle - distance = (((x - (size[0] / 2)) * sin((dt * a) + initial_angle)) + - ((y - (size[1] / 2)) * -cos((dt * a) + initial_angle)) + - size[0] / 2) - column = int(round(distance)) # column of the matrix closest to the distance - if column >= 0 and column < size[0]: - matrix[column][a] += 1 - - new_image = Image.new('L', size) - new_image_l = new_image.load() - - minimum = min([min(m) for m in matrix]) - - maximum = max([max(m) for m in matrix]) - minimum + image_s = pcf.hough(image.size, image.tostring(), self.initial_angle, self.dt) + image = Image.fromstring('L', image.size, image_s) + return image + + def lines_from_list(self, p_list): + lines = [] + for p in p_list: + lines.append(self.angle_distance(p)) + return lines - for y in xrange(size[1]): - for x in xrange(size[0]): - new_image_l[x, y] = (float(matrix[x][y] - minimum) / maximum) * 255 - - return new_image + def all_lines_h(self, image): + im_l = image.load() + lines1 = [] + for x in xrange(image.size[0] / 2): + for y in xrange(image.size[1]): + if im_l[x, y]: + lines1.append(self.angle_distance((x, y))) + lines2 = [] + for x in xrange(image.size[0] / 2, image.size[0]): + for y in xrange(image.size[1]): + if im_l[x, y]: + lines2.append(self.angle_distance((x, y))) + return [lines1, lines2] def all_lines(self, image): - im_l = image.load() - lines = [] - for x in xrange(image.size[0]): + im_l = image.load() + lines = [] + for x in xrange(image.size[0]): for y in xrange(image.size[1]): - if im_l[x, y]: - lines.append(self.angle_distance((x, y))) + if im_l[x, y]: + lines.append(self.angle_distance((x, y))) return lines - def find_angle_distance(self, image): - image_l = image.load() - - points = [] - - count = 0 - point_x = 0 - point_y = 0 - for x in xrange(image.size[0] / 2): - for y in xrange(image.size[1] / 2, image.size[1]): - if image_l[x, y]: - count += 1 - point_x += x - point_y += y - points.append((float(point_x) / count, float(point_y) / count)) - - count = 0 - point_x = 0 - point_y = 0 - for x in xrange(image.size[0] / 2, image.size[0]): - for y in xrange(image.size[1] / 2, image.size[1]): - if image_l[x, y]: - count += 1 - point_x += x - point_y += y - points.append((float(point_x) / count, float(point_y) / count)) - - return [self.angle_distance(p) for p in points] - def angle_distance(self, point): - return (self.dt * point[1] + self.initial_angle, point[0] - self.size[0] / 2) - + return (self.dt * point[1] + self.initial_angle, point[0] - self.size[0] / 2) +