X-Git-Url: http://git.tomasm.cz/imago.git/blobdiff_plain/841662dc25b40dce151a0bf7a024e55682028f18..6043532d944c572b124e0363c416929d74ea8f23:/src/ransac.py?ds=inline diff --git a/src/ransac.py b/src/ransac.py index 197fc31..4f0d9a0 100644 --- a/src/ransac.py +++ b/src/ransac.py @@ -7,8 +7,6 @@ import numpy as NP # TODO comments # TODO threshold -def initial_estimate(data): - return random.sample(data, 2) def points_to_line((x1, y1), (x2, y2)): return (y2 - y1, x1 - x2, x2 * y1 - x1 * y2) @@ -26,37 +24,48 @@ def least_squares(data): [a,c] = NP.dot(NP.linalg.inv(NP.dot(xt, x)), xt).dot(y).flat return (a, -1, c) -def get_model(data): - if len(data) == 2: - return points_to_line(*data) - else: - return least_squares(data) +class Linear_model: + def __init__(self, data): + self.data = data -def iterate(data, distance): + def get(self, sample): + if len(sample) == 2: + return points_to_line(*sample) + else: + return least_squares(sample) + + def initial(self): + return random.sample(self.data, 2) + +def iterate(model, distance): consensus = 0 - consensual = initial_estimate(data) + consensual = model.initial() while (len(consensual) > consensus): consensus = len(consensual) - model = get_model(consensual) - consensual = filter_near(data, model, distance) - return consensus, model, consensual + try: + estimate = model.get(consensual) + except NP.linalg.LinAlgError: + pass + consensual = filter_near(model.data, estimate, distance) + return consensus, estimate, consensual -def estimate(data, dist, k): +def estimate(data, dist, k, modelClass=Linear_model): + model = modelClass(data) best = 0 - model = None + estimate = None consensual = None for i in xrange(0, k): - new, new_model, new_consensual = iterate(data, dist) + new, new_estimate, new_consensual = iterate(model, dist) if new > best: best = new - model = new_model + estimate = new_estimate consensual = new_consensual - return model, consensual + return estimate, consensual -def ransac_duo(data, dist, k, mk): +def ransac_duo(data, dist, k, mk, modelClass=Linear_model): cons = [] for i in xrange(mk): - model, cons = estimate(set(data) - set(cons), dist, k) - return (model, cons), estimate(set(data) - set(cons), dist, k) + model, cons = estimate(set(data) - set(cons), dist, k, modelClass) + return (model, cons), estimate(set(data) - set(cons), dist, k, modelClass)