X-Git-Url: http://git.tomasm.cz/imago.git/blobdiff_plain/7f4334b61a001eb1a2df878f804a9f6771263709..33c8ac60f68f6ab030d894b208774505cab20ea8:/src/ransac.py diff --git a/src/ransac.py b/src/ransac.py index 4f0d9a0..5d5d218 100644 --- a/src/ransac.py +++ b/src/ransac.py @@ -7,7 +7,6 @@ import numpy as NP # TODO comments # TODO threshold - def points_to_line((x1, y1), (x2, y2)): return (y2 - y1, x1 - x2, x2 * y1 - x1 * y2) @@ -37,26 +36,41 @@ class Linear_model: def initial(self): return random.sample(self.data, 2) + def score(self, est, dist): + cons = [] + score = 0 + a, b, c = est + dst = lambda (x, y): abs(a * x + b * y + c) / sqrt(a*a+b*b) + for p in self.data: + d = dst(p) + if d <= dist: + cons.append(p) + score += min(d, dist) + return score, cons + def iterate(model, distance): - consensus = 0 + score = float("inf") consensual = model.initial() - while (len(consensual) > consensus): - consensus = len(consensual) + estimate = model.get(consensual) + new_score, consensual = model.score(estimate, distance) + while (new_score < score): + score = new_score try: estimate = model.get(consensual) except NP.linalg.LinAlgError: pass - consensual = filter_near(model.data, estimate, distance) - return consensus, estimate, consensual + estimate = model.get(consensual) + new_score, consensual = model.score(estimate, distance) + return score, estimate, consensual def estimate(data, dist, k, modelClass=Linear_model): model = modelClass(data) - best = 0 + best = float("inf") estimate = None consensual = None for i in xrange(0, k): new, new_estimate, new_consensual = iterate(model, dist) - if new > best: + if new < best: best = new estimate = new_estimate consensual = new_consensual