X-Git-Url: http://git.tomasm.cz/imago.git/blobdiff_plain/78ff145bbc5a1323c889b174d0f93ab30bfc0efe..666ac3553431948203df831afe240beb3fcaec32:/src/intrsc.py?ds=sidebyside diff --git a/src/intrsc.py b/src/intrsc.py index 62f1498..91801fe 100644 --- a/src/intrsc.py +++ b/src/intrsc.py @@ -4,7 +4,7 @@ from math import cos, tan, pi from operator import itemgetter import colorsys -import ImageDraw +from PIL import ImageDraw import filters import k_means @@ -68,7 +68,7 @@ def board(image, intersections, show_all, do_something, logger): if show_all: import matplotlib.pyplot as pyplot - import Image + from PIL import Image fig = pyplot.figure(figsize=(8, 6)) luma = [s[0] for s in board_raw] saturation = [s[1] for s in board_raw] @@ -94,8 +94,10 @@ def board(image, intersections, show_all, do_something, logger): #color_data = [(norm_s0(s[0]), norm_s1(s[1])) for s in board_raw] color_data = [(s[0], s[1]) for s in board_raw] + init_x = sum(c[0] for c in color_data) / float(len(color_data)) + clusters, score = k_means.cluster(3, 2,zip(color_data, range(len(color_data))), - [[0., 0.5], [0.5, 0.5], [1., 0.5]]) + [[0., 0.5], [init_x, 0.5], [1., 0.5]]) # clusters1, score1 = k_means.cluster(1, 2,zip(color_data, range(len(color_data))), # [[0.5, 0.5]]) # clusters2, score2 = k_means.cluster(2, 2,zip(color_data, range(len(color_data))),