X-Git-Url: http://git.tomasm.cz/imago.git/blobdiff_plain/3a843a5f148dd7728130b33ef406c0de08cb4dcc..24a7e923346be5e355a7d61e642fc469310444ef:/gridf.py?ds=sidebyside diff --git a/gridf.py b/gridf.py index 0c5b68f..3bb7c54 100644 --- a/gridf.py +++ b/gridf.py @@ -1,14 +1,16 @@ """Imago grid-fitting module""" import multiprocessing +from functools import partial import Image, ImageDraw, ImageFilter -from geometry import V, projection -from manual import lines as g_grid, l2ad +from geometry import V, projection, l2ad +from manual import lines as g_grid from intrsc import intersections_from_angl_dist from linef import line_from_angl_dist import pcf +import cs as Optimizer class GridFittingFailedError(Exception): pass @@ -21,33 +23,14 @@ class MyGaussianBlur(ImageFilter.Filter): def filter(self, image): return image.gaussian_blur(self.radius) -def job_br1(args): - im_l, v1, v2, h1, h2, x, y, dv, dh, size = args - v1 = (v1[0] + x * dv, v1[1] + x) - v2 = (v2[0] + y * dv, v2[1] + y) - return (distance(im_l, - get_grid([v1, v2], [h1, h2], size), - size), x, y) - -def job_br2(args): - im_l, v1, v2, h1, h2, x, y, dv, dh, size = args - h1 = (h1[0] + x * dh, h1[1] + x) - h2 = (h2[0] + y * dh, h2[1] + y) - return (distance(im_l, - get_grid([v1, v2], [h1, h2], size), - size), x, y) - -def job_4(args): - im_l, v1, v2, h1, h2, x, y, w, z, dv, dh, size = args +def job_4(x, y, w, z, im_l, v1, v2, h1, h2, dv, dh, size): v1 = (v1[0] + x * dv, v1[1] + x) v2 = (v2[0] + y * dv, v2[1] + y) h1 = (h1[0] + w * dh, h1[1] + w) h2 = (h2[0] + z * dh, h2[1] + z) - return (distance(im_l, - get_grid([v1, v2], [h1, h2], size), - size), x, y, w, z) + return (distance(im_l, get_grid([v1, v2], [h1, h2], size), size)) -def find(lines, size, l1, l2, bounds, hough, do_something, im_h): +def find(lines, size, l1, l2, bounds, hough, show_all, do_something): l1 = line_from_angl_dist(l1, size) l2 = line_from_angl_dist(l2, size) v1 = V(*l1[0]) - V(*l1[1]) @@ -69,40 +52,17 @@ def find(lines, size, l1, l2, bounds, hough, do_something, im_h): for line in sum(lines, []): dr_l.line(line_from_angl_dist(line, size), width=1, fill=255) - im_l = im_l.filter(MyGaussianBlur(radius=5)) + im_l = im_l.filter(MyGaussianBlur(radius=3)) #GaussianBlur is undocumented class, may not work in future versions of PIL im_l_s = im_l.tostring() - #let's try the ULTRA bruteforce aproach: - pool = multiprocessing.Pool(None) - #import time #start = time.time() - k = 30 - tasks = [(im_l_s, v1, v2, h1, h2, x, y, w, z, delta_v, delta_h, size) - for x in xrange(-k, k, 2) - for y in xrange(-k, k, 2) - for z in xrange(-k, k, 2) - for w in xrange(-k, k, 2)] - - opt = pool.map(job_4, tasks) - _, x_v, y_v, x_h, y_h = max(opt) - - v1 = (v1[0] + x_v * delta_v, v1[1] + x_v) - v2 = (v2[0] + y_v * delta_v, v2[1] + y_v) - h1 = (h1[0] + x_h * delta_h, h1[1] + x_h) - h2 = (h2[0] + y_h * delta_h, h2[1] + y_h) - - k = 5 - tasks = [(im_l_s, v1, v2, h1, h2, x, y, w, z, delta_v, delta_h, size) - for x in xrange(-k, k) - for y in xrange(-k, k) - for z in xrange(-k, k) - for w in xrange(-k, k)] + f_dist = partial(job_4, im_l=im_l_s, v1=v1, v2=v2, h1=h1, h2=h2, + dv=delta_v, dh=delta_h, size=size) - opt = pool.map(job_4, tasks) - _, x_v, y_v, x_h, y_h = max(opt) + x_v, y_v, x_h, y_h = Optimizer.optimize(4, 30, f_dist, 128, 256) v1 = (v1[0] + x_v * delta_v, v1[1] + x_v) v2 = (v2[0] + y_v * delta_v, v2[1] + y_v) @@ -112,9 +72,6 @@ def find(lines, size, l1, l2, bounds, hough, do_something, im_h): grid = get_grid([v1, v2], [h1, h2], size) grid_lines = [[l2ad(l, size) for l in grid[0]], [l2ad(l, size) for l in grid[1]]] - - pool.terminate() - pool.join() #print time.time() - start @@ -125,20 +82,22 @@ def find(lines, size, l1, l2, bounds, hough, do_something, im_h): # delta_v, delta_h, x_v, y_v, x_h, y_h, size) ### + if show_all: + ### Show grid over lines # -# im_t = Image.new('RGB', im_l.size, None) -# im_t_l = im_t.load() -# im_l_l = im_l.load() -# for x in xrange(im_t.size[0]): -# for y in xrange(im_t.size[1]): -# im_t_l[x, y] = (im_l_l[x, y], 0, 0) -# -# im_t_d = ImageDraw.Draw(im_t) -# for l in grid[0] + grid[1]: -# im_t_d.line(l, width=1, fill=(0, 255, 0)) -# -# do_something(im_t, "lines and grid") + im_t = Image.new('RGB', im_l.size, None) + im_t_l = im_t.load() + im_l_l = im_l.load() + for x in xrange(im_t.size[0]): + for y in xrange(im_t.size[1]): + im_t_l[x, y] = (im_l_l[x, y], 0, 0) + + im_t_d = ImageDraw.Draw(im_t) + for l in grid[0] + grid[1]: + im_t_d.line(l, width=1, fill=(0, 255, 0)) + + do_something(im_t, "lines and grid") ### return grid, grid_lines @@ -165,8 +124,8 @@ def distance(im_l, grid, size): dr_g = ImageDraw.Draw(im_g) for line in grid[0] + grid[1]: dr_g.line(line, width=1, fill=255) -# if line_out(line, size): -# return 0 + if line_out(line, size): + return 0 #im_g = im_g.filter(MyGaussianBlur(radius=3)) #GaussianBlur is undocumented class, may not work in future versions of PIL #im_d, distance = combine(im_l, im_g)