X-Git-Url: http://git.tomasm.cz/imago.git/blobdiff_plain/05a2c37fb3f522545dd86f34ea9c1469d93002a9..9e65c8f01fda8f2ad1895c39b80dd081bd87a1b5:/src/ransac.py diff --git a/src/ransac.py b/src/ransac.py index 4f0d9a0..6557ea4 100644 --- a/src/ransac.py +++ b/src/ransac.py @@ -7,7 +7,6 @@ import numpy as NP # TODO comments # TODO threshold - def points_to_line((x1, y1), (x2, y2)): return (y2 - y1, x1 - x2, x2 * y1 - x1 * y2) @@ -37,35 +36,58 @@ class Linear_model: def initial(self): return random.sample(self.data, 2) + def score(self, est, dist): + cons = [] + score = 0 + a, b, c = est + dst = lambda (x, y): abs(a * x + b * y + c) / sqrt(a*a+b*b) + for p in self.data: + d = dst(p) + if d <= dist: + cons.append(p) + score += min(d, dist) + return score, cons + + def remove(self, data): + self.data = list(set(self.data) - set(data)) + def iterate(model, distance): - consensus = 0 + score = float("inf") consensual = model.initial() - while (len(consensual) > consensus): - consensus = len(consensual) - try: - estimate = model.get(consensual) - except NP.linalg.LinAlgError: - pass - consensual = filter_near(model.data, estimate, distance) - return consensus, estimate, consensual + estimate = model.get(consensual) + new_score, new_consensual = model.score(estimate, distance) + if new_consensual != []: + while (new_score < score): + score, consensual = new_score, new_consensual + try: + estimate = model.get(consensual) + new_score, new_consensual = model.score(estimate, distance) + except (NP.linalg.LinAlgError): + pass + return score, estimate, consensual -def estimate(data, dist, k, modelClass=Linear_model): - model = modelClass(data) - best = 0 +def estimate(data, dist, k, modelClass=Linear_model, model=None): + if not model: + model = modelClass(data) + best = float("inf") estimate = None consensual = None for i in xrange(0, k): new, new_estimate, new_consensual = iterate(model, dist) - if new > best: + if new < best: best = new estimate = new_estimate consensual = new_consensual return estimate, consensual -def ransac_duo(data, dist, k, mk, modelClass=Linear_model): +def ransac_multi(m, data, dist, k, modelClass=Linear_model, model=None): + if not model: + model = modelClass(data) + ests = [] cons = [] - for i in xrange(mk): - model, cons = estimate(set(data) - set(cons), dist, k, modelClass) - return (model, cons), estimate(set(data) - set(cons), dist, k, modelClass) - + for i in xrange(m): + est, cons_new = estimate(None, dist, k, model=model) + model.remove(cons_new) + ests.append((est, cons_new)) + return ests