+from linef import line_from_angl_dist
+import pcf
+import cs as Optimizer
+
+class GridFittingFailedError(Exception):
+ pass
+
+class MyGaussianBlur(ImageFilter.Filter):
+ name = "GaussianBlur"
+
+ def __init__(self, radius=2):
+ self.radius = radius
+ def filter(self, image):
+ return image.gaussian_blur(self.radius)
+
+def job_4(x, y, w, z, im_l, v1, v2, h1, h2, dv, dh, size):
+ v1 = (v1[0] + x * dv, v1[1] + x)
+ v2 = (v2[0] + y * dv, v2[1] + y)
+ h1 = (h1[0] + w * dh, h1[1] + w)
+ h2 = (h2[0] + z * dh, h2[1] + z)
+ return (distance(im_l, get_grid([v1, v2], [h1, h2], size), size))
+
+def find(lines, size, l1, l2, bounds, hough, do_something, im_h):
+ l1 = line_from_angl_dist(l1, size)
+ l2 = line_from_angl_dist(l2, size)
+ v1 = V(*l1[0]) - V(*l1[1])
+ v2 = V(*l2[0]) - V(*l2[1])
+ a, b, c, d = [V(*a) for a in bounds]
+ a = projection(a, l1, v1)
+ b = projection(b, l1, v1)
+ c = projection(c, l2, v2)
+ d = projection(d, l2, v2)
+
+ v1, v2 = hough.lines_from_list([a, b])
+ h1, h2 = hough.lines_from_list([c, d])
+
+ delta_v = ((l1[1][1] - l1[0][1]) * hough.dt) / l1[1][0]
+ delta_h = ((l2[1][1] - l2[0][1]) * hough.dt) / l2[1][0]
+
+ im_l = Image.new('L', size)
+ dr_l = ImageDraw.Draw(im_l)
+ for line in sum(lines, []):
+ dr_l.line(line_from_angl_dist(line, size), width=1, fill=255)
+
+ im_l = im_l.filter(MyGaussianBlur(radius=3))
+ #GaussianBlur is undocumented class, may not work in future versions of PIL
+ im_l_s = im_l.tostring()