-from manual import lines as g_grid, l2ad
+"""Imago grid-fitting module"""
+
+import multiprocessing
+from functools import partial
+
+import Image, ImageDraw, ImageFilter
+
+from geometry import V, projection, l2ad
+from manual import lines as g_grid
from intrsc import intersections_from_angl_dist
+from linef import line_from_angl_dist
+import pcf
+import pso
+
+class GridFittingFailedError(Exception):
+ pass
+
+class MyGaussianBlur(ImageFilter.Filter):
+ name = "GaussianBlur"
+
+ def __init__(self, radius=2):
+ self.radius = radius
+ def filter(self, image):
+ return image.gaussian_blur(self.radius)
+
+def job_4(x, y, w, z, im_l, v1, v2, h1, h2, dv, dh, size):
+ v1 = (v1[0] + x * dv, v1[1] + x)
+ v2 = (v2[0] + y * dv, v2[1] + y)
+ h1 = (h1[0] + w * dh, h1[1] + w)
+ h2 = (h2[0] + z * dh, h2[1] + z)
+ return (distance(im_l, get_grid([v1, v2], [h1, h2], size), size))
+
+def find(lines, size, l1, l2, bounds, hough, do_something, im_h):
+ l1 = line_from_angl_dist(l1, size)
+ l2 = line_from_angl_dist(l2, size)
+ v1 = V(*l1[0]) - V(*l1[1])
+ v2 = V(*l2[0]) - V(*l2[1])
+ a, b, c, d = [V(*a) for a in bounds]
+ a = projection(a, l1, v1)
+ b = projection(b, l1, v1)
+ c = projection(c, l2, v2)
+ d = projection(d, l2, v2)
+
+ v1, v2 = hough.lines_from_list([a, b])
+ h1, h2 = hough.lines_from_list([c, d])
+
+ delta_v = ((l1[1][1] - l1[0][1]) * hough.dt) / l1[1][0]
+ delta_h = ((l2[1][1] - l2[0][1]) * hough.dt) / l2[1][0]
+
+ im_l = Image.new('L', size)
+ dr_l = ImageDraw.Draw(im_l)
+ for line in sum(lines, []):
+ dr_l.line(line_from_angl_dist(line, size), width=1, fill=255)
+
+ im_l = im_l.filter(MyGaussianBlur(radius=5))
+ #GaussianBlur is undocumented class, may not work in future versions of PIL
+ im_l_s = im_l.tostring()
-def find(lines, size, l1, l2):
- c = intersections_from_angl_dist(lines, size)
- corners = [c[0][0], c[0][-1], c[-1][0], c[-1][-1]]
+ import time
+ start = time.time()
+
+ f_dist = partial(job_4, im_l=im_l_s, v1=v1, v2=v2, h1=h1, h2=h2,
+ dv=delta_v, dh=delta_h, size=size)
+
+ x_v, y_v, x_h, y_h = pso.optimize(4, 30, f_dist, 32, 1028)
+
+ v1 = (v1[0] + x_v * delta_v, v1[1] + x_v)
+ v2 = (v2[0] + y_v * delta_v, v2[1] + y_v)
+ h1 = (h1[0] + x_h * delta_h, h1[1] + x_h)
+ h2 = (h2[0] + y_h * delta_h, h2[1] + y_h)
+
+ grid = get_grid([v1, v2], [h1, h2], size)
+ grid_lines = [[l2ad(l, size) for l in grid[0]],
+ [l2ad(l, size) for l in grid[1]]]
+
+ print time.time() - start
+
+### Show error surface
+#
+# from gridf_analyzer import error_surface
+# error_surface(k, im_l_s, v1_i, v2_i, h1_i, h2_i,
+# delta_v, delta_h, x_v, y_v, x_h, y_h, size)
+###
+
+### Show grid over lines
+#
+ im_t = Image.new('RGB', im_l.size, None)
+ im_t_l = im_t.load()
+ im_l_l = im_l.load()
+ for x in xrange(im_t.size[0]):
+ for y in xrange(im_t.size[1]):
+ im_t_l[x, y] = (im_l_l[x, y], 0, 0)
+
+ im_t_d = ImageDraw.Draw(im_t)
+ for l in grid[0] + grid[1]:
+ im_t_d.line(l, width=1, fill=(0, 255, 0))
+
+ do_something(im_t, "lines and grid")
+###
+
+ return grid, grid_lines
+
+def get_grid(l1, l2, size):
+ c = intersections_from_angl_dist([l1, l2], size, get_all=True)
+ #TODO do something when a corner is outside the image
+ corners = (c[0] + c[1])
+ if len(corners) < 4:
+ print l1, l2, c
+ raise GridFittingFailedError
grid = g_grid(corners)
return grid
+
+def line_out(line, size):
+ for p in line:
+ if p[0] < 0 or p[0] > size[0] or p[1] < 0 or p[1] > size[1]:
+ return True
+ else:
+ return False
+
+def distance(im_l, grid, size):
+ im_g = Image.new('L', size)
+ dr_g = ImageDraw.Draw(im_g)
+ for line in grid[0] + grid[1]:
+ dr_g.line(line, width=1, fill=255)
+ if line_out(line, size):
+ return 0
+ #im_g = im_g.filter(MyGaussianBlur(radius=3))
+ #GaussianBlur is undocumented class, may not work in future versions of PIL
+ #im_d, distance = combine(im_l, im_g)
+ distance_d = pcf.combine(im_l, im_g.tostring())
+ return distance_d