- max_s0 = max(s[0] for s in board_raw)
- min_s0 = min(s[0] for s in board_raw)
- norm_s0 = lambda x: (x - min_s0) / (max_s0 - min_s0)
- max_s1 = max(s[1] for s in board_raw)
- min_s1 = min(s[1] for s in board_raw)
- norm_s1 = lambda x: (x - min_s1) / (max_s1 - min_s1)
- max_s1 = max(s[1] for s in board_raw)
- min_s1 = min(s[1] for s in board_raw)
- norm_s1 = lambda x: (x - min_s1) / (max_s1 - min_s1)
- color_data = [(norm_s0(s[0]), norm_s1(s[1])) for s in board_raw]
-
- clusters = k_means.cluster(3, 2,zip(color_data, range(len(color_data))),
- [[0., 0.5], [0.5, 0.5], [1., 0.5]])
-
+ #max_s0 = max(s[0] for s in board_raw)
+ #min_s0 = min(s[0] for s in board_raw)
+ #norm_s0 = lambda x: (x - min_s0) / (max_s0 - min_s0)
+ #max_s1 = max(s[1] for s in board_raw)
+ #min_s1 = min(s[1] for s in board_raw)
+ #norm_s1 = lambda x: (x - min_s1) / (max_s1 - min_s1)
+ #max_s1 = max(s[1] for s in board_raw)
+ #min_s1 = min(s[1] for s in board_raw)
+ #norm_s1 = lambda x: (x - min_s1) / (max_s1 - min_s1)
+ #color_data = [(norm_s0(s[0]), norm_s1(s[1])) for s in board_raw]
+ color_data = [(s[0], s[1]) for s in board_raw]
+
+ init_x = sum(c[0] for c in color_data) / float(len(color_data))
+
+ clusters, score = k_means.cluster(3, 2,zip(color_data, range(len(color_data))),
+ [[0., 0.5], [init_x, 0.5], [1., 0.5]])
+# clusters1, score1 = k_means.cluster(1, 2,zip(color_data, range(len(color_data))),
+# [[0.5, 0.5]])
+# clusters2, score2 = k_means.cluster(2, 2,zip(color_data, range(len(color_data))),
+# [[0., 0.5], [0.75, 0.5]])
+# import sys
+# print >> sys.stderr, score1, score2, score
+#