from manual import lines as g_grid, l2ad, intersection, line as g_line
from intrsc import intersections_from_angl_dist
from linef import line_from_angl_dist
from manual import lines as g_grid, l2ad, intersection, line as g_line
from intrsc import intersections_from_angl_dist
from linef import line_from_angl_dist
def __rmul__(self, other):
return V(other * self.x, other * self.y)
def __rmul__(self, other):
return V(other * self.x, other * self.y)
def normal(self):
return V(-self.y, self.x)
def projection(point, line, vector):
def normal(self):
return V(-self.y, self.x)
def projection(point, line, vector):
- n = vector.normal()
- l2 = g_line(point.t(), (point + n).t())
- return V(*intersection(l2, g_line(*line)))
+ return V(*intersection(g_line(point, point + vector.normal), g_line(*line)))
def error_surface(lines, a, b, c, d, hough, size, v1):
import matplotlib.pyplot as plt
from matplotlib import cm
def error_surface(lines, a, b, c, d, hough, size, v1):
import matplotlib.pyplot as plt
from matplotlib import cm
+
+ class Worker(threading.Thread):
+ def __init__(self, q_in, q_out, job):
+ threading.Thread.__init__(self)
+ self.q_in = q_in
+ self.q_out = q_out
+ self.job = job
+
+ def run(self):
+ while True:
+ x = self.q_in.get()
+ try:
+ self.q_out.put((x, self.job(x)))
+ except Exception:
+ pass
+ print x
+ self.q_in.task_done()
+
+
+ job = lambda x: [distance(lines, get_grid(a + X[x][y] * s * v1,
+ b + Y[x][y] * s * v1,
+ c, d, hough, size),
+ size) for y in range(0,2 * k)]
+
+ q_in = Queue.Queue()
+ q_out = Queue.Queue()
+ for i in range(4):
+ t = Worker(q_in, q_out, job)
+ t.daemon = True
+ t.start()
- Z.append([distance(lines, get_grid(a + X[x][y] * s * v1, b + Y[x][y] * s * v1,
- c, d, hough, size),
- size) for y in range(0, 2* k)])
- except Exception:
- Z.append(Z[-1])
- o = ((time.clock() - start) * (2 * k - (x + 1))) / (60 * (x + 1))
- print x + 1, "{0} h {1:2.2f} m".format(int(o) / 60, o % 60)
+ Z.append(q_out.get_nowait())
+ except Queue.Empty:
+ break
+
+ Z.sort()
+ Z = [t for (x, t) in Z]
+
s_file = open('surface' + str(k), 'w')
pickle.dump((X, Y, Z), s_file)
s_file.close()
s_file = open('surface' + str(k), 'w')
pickle.dump((X, Y, Z), s_file)
s_file.close()
def find(lines, size, l1, l2, bounds, hough, do_something):
a, b, c, d = [V(*a) for a in bounds]
l1 = line_from_angl_dist(l1, size)
def find(lines, size, l1, l2, bounds, hough, do_something):
a, b, c, d = [V(*a) for a in bounds]
l1 = line_from_angl_dist(l1, size)
b = projection(b, l1, v1)
c = projection(c, l2, v2)
d = projection(d, l2, v2)
b = projection(b, l1, v1)
c = projection(c, l2, v2)
d = projection(d, l2, v2)
grid = get_grid(a, b, c, d, hough, size)
dist = distance(lines, grid, size)
print dist
grid = get_grid(a, b, c, d, hough, size)
dist = distance(lines, grid, size)
print dist
s = 0.02
while True:
ts1 = [(s, 0), (-s, 0), (s, s), (-s, -s), (-s, s), (s, -s), (0, s), (0, -s)]
s = 0.02
while True:
ts1 = [(s, 0), (-s, 0), (s, s), (-s, -s), (-s, s), (s, -s), (0, s), (0, -s)]
return grid, grid_lines
def get_grid(a, b, c, d, hough, size):
return grid, grid_lines
def get_grid(a, b, c, d, hough, size):
- l1 = hough.lines_from_list([a.t(), b.t()])
- l2 = hough.lines_from_list([c.t(), d.t()])
+ l1 = hough.lines_from_list([a, b])
+ l2 = hough.lines_from_list([c, d])
c = intersections_from_angl_dist([l1, l2], size, get_all=True)
#TODO do something when a corner is outside the image
corners = (c[0] + c[1])
c = intersections_from_angl_dist([l1, l2], size, get_all=True)
#TODO do something when a corner is outside the image
corners = (c[0] + c[1])
dr_l = ImageDraw.Draw(im_l)
for line in sum(lines, []):
dr_l.line(line_from_angl_dist(line, size), width=1, fill=255)
dr_l = ImageDraw.Draw(im_l)
for line in sum(lines, []):
dr_l.line(line_from_angl_dist(line, size), width=1, fill=255)
#GaussianBlur is undocumented class, may not work in future versions of PIL
im_g = Image.new('L', size)
dr_g = ImageDraw.Draw(im_g)
for line in grid[0] + grid[1]:
dr_g.line(line, width=1, fill=255)
#im_g = im_g.filter(MyGaussianBlur(radius=3))
#GaussianBlur is undocumented class, may not work in future versions of PIL
im_g = Image.new('L', size)
dr_g = ImageDraw.Draw(im_g)
for line in grid[0] + grid[1]:
dr_g.line(line, width=1, fill=255)
#im_g = im_g.filter(MyGaussianBlur(radius=3))
- im_d, distance = combine(im_l, im_g)
+ #im_d, distance = combine(im_l, im_g)
+ distance = pcf.combine(im_l.tostring(), im_g.tostring())