+ im_l = im_l.filter(MyGaussianBlur(radius=5))
+ #GaussianBlur is undocumented class, may not work in future versions of PIL
+ im_l_s = im_l.tostring()
+
+ #let's try the ULTRA bruteforce aproach:
+ pool = multiprocessing.Pool(None)
+
+ #import time
+ #start = time.time()
+
+ k = 30
+ tasks = [(im_l_s, v1, v2, h1, h2, x, y, w, z, delta_v, delta_h, size)
+ for x in xrange(-k, k, 2)
+ for y in xrange(-k, k, 2)
+ for z in xrange(-k, k, 2)
+ for w in xrange(-k, k, 2)]
+
+ opt = pool.map(job_4, tasks)
+ _, x_v, y_v, x_h, y_h = max(opt)
+
+ v1 = (v1[0] + x_v * delta_v, v1[1] + x_v)
+ v2 = (v2[0] + y_v * delta_v, v2[1] + y_v)
+ h1 = (h1[0] + x_h * delta_h, h1[1] + x_h)
+ h2 = (h2[0] + y_h * delta_h, h2[1] + y_h)
+
+ k = 5
+ tasks = [(im_l_s, v1, v2, h1, h2, x, y, w, z, delta_v, delta_h, size)
+ for x in xrange(-k, k)
+ for y in xrange(-k, k)
+ for z in xrange(-k, k)
+ for w in xrange(-k, k)]
+
+ opt = pool.map(job_4, tasks)
+ _, x_v, y_v, x_h, y_h = max(opt)
+
+ v1 = (v1[0] + x_v * delta_v, v1[1] + x_v)
+ v2 = (v2[0] + y_v * delta_v, v2[1] + y_v)
+ h1 = (h1[0] + x_h * delta_h, h1[1] + x_h)
+ h2 = (h2[0] + y_h * delta_h, h2[1] + y_h)
+
+ grid = get_grid([v1, v2], [h1, h2], size)
+ grid_lines = [[l2ad(l, size) for l in grid[0]],
+ [l2ad(l, size) for l in grid[1]]]
+
+ pool.terminate()
+ pool.join()
+
+ #print time.time() - start