- clusters = k_means.cluster(3, 2,zip(zip(luma, saturation), range(len(luma))),
+ max_s0 = max(s[0] for s in board_raw)
+ min_s0 = min(s[0] for s in board_raw)
+ norm_s0 = lambda x: (x - min_s0) / (max_s0 - min_s0)
+ max_s1 = max(s[1] for s in board_raw)
+ min_s1 = min(s[1] for s in board_raw)
+ norm_s1 = lambda x: (x - min_s1) / (max_s1 - min_s1)
+ max_s1 = max(s[1] for s in board_raw)
+ min_s1 = min(s[1] for s in board_raw)
+ norm_s1 = lambda x: (x - min_s1) / (max_s1 - min_s1)
+ color_data = [(norm_s0(s[0]), norm_s1(s[1])) for s in board_raw]
+
+ clusters = k_means.cluster(3, 2,zip(color_data, range(len(color_data))),