- for trial in xrange(3):
- line1, cons = ransac.estimate(points, 2, 800, Diagonal_model)
- points2 = map(lambda l: [(p if not p in cons else None) for p in l], points)
- line2, cons2 = ransac.estimate(points2, 2, 800, Diagonal_model)
- center = intersection(line1, line2)
- data = sum(points, [])
- diag1 = Line(line1)
- diag1.points = ransac.filter_near(data, diag1, 2)
- diag2 = Line(line2)
- diag2.points = ransac.filter_near(data, diag2, 2)
+ def dst_p(x, y):
+ x = x - size[0] / 2
+ y = y - size[1] / 2
+ return sqrt(x * x + y * y)
+
+ for n_tries in xrange(3):
+ logger("finding the diagonals")
+ model = Diagonal_model(points)
+ diag_lines = ransac.ransac_multi(6, points, 2,
+ params.ransac_diagonal_iter, model=model)
+ diag_lines = [l[0] for l in diag_lines]
+ centers = []
+ cen_lin = []
+ for i in xrange(len(diag_lines)):
+ line1 = diag_lines[i]
+ for line2 in diag_lines[i+1:]:
+ c = intersection(line1, line2)
+ if c and dst_p(*c) < min(size) / 2:
+ cen_lin.append((line1, line2, c))
+ centers.append(c)