import ImageDraw
import k_means
+import output
def dst(line):
"""Return normalized line."""
if show_all:
import matplotlib.pyplot as pyplot
pyplot.scatter(luma, saturation,
- color=[(s[2][0]/255., s[2][1]/255., s[2][2]/255., 1.)
- for s in board_raw])
+ color=[(s[2][0]/255.,
+ s[2][1]/255.,
+ s[2][2]/255., 1.)
+ for s in board_raw])
+ pyplot.xlim(0,1)
+ pyplot.ylim(0,1)
pyplot.show()
clusters = k_means.cluster(3, 2,zip(zip(luma, saturation), range(len(luma))),
- [[0., 0.], [0.5, 0.5], [1., 1.]])
+ [[0., 0.], [0.5, 0.5], [1., 0.]])
#clusters.sort(key=mean_luma)
if show_all:
color=(0,1,0,1))
pyplot.scatter([d[0][0] for d in clusters[2]], [d[0][1] for d in clusters[2]],
color=(0,0,1,1))
+ pyplot.xlim(0,1)
+ pyplot.ylim(0,1)
pyplot.show()
clusters[0] = [(p[1], 'B') for p in clusters[0]]
board_r = []
+ #TODO 19 should be a size parameter
try:
for i in xrange(19):
- board_r.append([])
for _ in xrange(19):
- board_r[i].append(board_rg.next())
+ board_r.append(board_rg.next())
except StopIteration:
pass
+
- return board_r
+ return output.Board(19, board_r)
def mean_luma(cluster):
return sum(c[0][0] for c in cluster) / float(len(cluster))
intersections.append(line)
return intersections
+def RGBtoSat(c):
+ """Using the HSI color model."""
+ max_diff = max(c) - min(c)
+ if max_diff == 0:
+ return 0
+ else:
+ return 1. - ((3. * min(c)) / sum(c))
+
def stone_color_raw(image, (x, y)):
"""Given image and coordinates, return stone color."""
suma = []
pass
luma = sum([0.30 * sum(s[0] for s in suma) / 25., 0.59 * sum(s[1] for s in suma) / 25.,
0.11 * sum(s[2] for s in suma) / 25.]) / 255.
- saturation = sum(max(s) - min(s) / float(255. - abs(max(s) + min(s) - 255))
- for s in suma) / (25. * 255.)
+ saturation = sum(RGBtoSat(s) for s in suma) / 25.
color = [sum(s[0] for s in suma) / 25., sum(s[1] for s in suma) / 25.,
sum(s[2] for s in suma) / 25.]
return luma, saturation, color