def nearest(lines, point):
return min(map(lambda l: dst(point, l), lines))
+def nearest2(lines, point):
+ return min(map(lambda l: dst(point, points_to_line(*l)), lines))
+
size = (520, 390)
+def generate_models(sample, middle):
+ sgrid = map(lambda l:linef.line_from_angl_dist(l, size), sample)
+ lh = (gm.intersection(sgrid[0], middle), gm.intersection(sgrid[1], middle))
+ for f in [0, 1, 2, 3, 5, 7, 8, 11, 15, 17]:
+ grid = gm.fill(sgrid[0], sgrid[1], lh , f)
+ grid = [sgrid[0]] + grid + [sgrid[1]]
+ for s in xrange(17 - f):
+ grid = [gm.expand_left(grid, middle)] + grid
+ yield grid
+ for i in xrange(17 - f):
+ grid = grid[1:]
+ grid.append(gm.expand_right(grid, middle))
+ yield grid
+
+
points = pickle.load(open('edges.pickle'))
lines = pickle.load(open('lines.pickle'))
l1, l2 = lines
+lines_general = map(to_general, sum(lines, []))
+near_points = [p for p in points if nearest(lines_general, p) <= 2]
+score = lambda grid: len([p for p in points if nearest2(grid, p) <= 2])
+
while True:
l1s = random.sample(l2, 2)
l1s.sort(key=lambda l: l[1])
- corners = map(lambda l:linef.line_from_angl_dist(l, size), l1s)
middle = ((0, 195),(520, 195))
- # TODO! can I assume anything to be perspectively disorted square?
+ # TODO! can I assume anything to be perspectively disorted square? No.
# TODO! take lower and middle and construct top
- lh = (gm.intersection(corners[0], middle), gm.intersection(corners[1], middle))
- grid = gm.fill(corners[0], corners[1], lh , 3)
- grid = [corners[0]] + grid + [corners[1]]
- grid.append(gm.expand(grid[-2], grid[-1], ((gm.intersection(middle, grid[-2]),
- (gm.intersection(middle, grid[-1]))))))
- grid.append(gm.expand(grid[-2], grid[-1], ((gm.intersection(middle, grid[-2]),
- (gm.intersection(middle, grid[-1]))))))
+ # TODO iterate that ^^^?
+
+ sc, grid = max(map(lambda g: (score(g), g), generate_models(l1s, middle)))
+ pyplot.scatter(*zip(*near_points))
map(lambda l: pyplot.plot(*zip(*l), color='b'), grid)
- plot_line(l1s[0], 'g')
+ plot_line(l1s[0], 'r')
plot_line(l1s[1], 'r')
-
pyplot.xlim(0, 520)
pyplot.ylim(0, 390)
pyplot.show()
sys.exit()
-lines_general = map(to_general, sum(lines, []))
-
-near_points = [p for p in points if nearest(lines_general, p) <= 2]
-pyplot.scatter(*zip(*near_points))
for l in lines[0]: