from PIL import Image
-from commons import clear
+import pcf
class Hough:
def __init__(self, size):
self.initial_angle = (pi / 4) + (self.dt / 2)
def transform(self, image):
- image_l = image.load()
- size = image.size
-
- matrix = [[0]*size[1] for _ in xrange(size[0])]
-
- dt = self.dt
- initial_angle = self.initial_angle
-
- for x in xrange(size[0]):
- clear()
- print "hough transform: {0:>3}/{1}".format(x + 1, size[0])
- for y in xrange(size[1]):
- if image_l[x, y]:
- # for every angle:
- for a in xrange(size[1]):
- # find the distance:
- # distance is the dot product of vector (x, y) - centerpoint
- # and a unit vector orthogonal to the angle
- distance = (((x - (size[0] / 2)) * sin((dt * a) + initial_angle)) +
- ((y - (size[1] / 2)) * -cos((dt * a) + initial_angle)) +
- size[0] / 2)
- # column of the matrix closest to the distance
- column = int(round(distance))
- if column >= 0 and column < size[0]:
- matrix[column][a] += 1
+ image_s = pcf.hough(image.size, image.tostring(), self.initial_angle, self.dt)
+ image = Image.fromstring('L', image.size, image_s)
+ return image
- new_image = Image.new('L', size)
- new_image_l = new_image.load()
-
- minimum = min([min(m) for m in matrix])
-
- maximum = max([max(m) for m in matrix]) - minimum
+ def lines_from_list(self, p_list):
+ lines = []
+ for p in p_list:
+ lines.append(self.angle_distance(p))
+ return lines
- for y in xrange(size[1]):
- for x in xrange(size[0]):
- new_image_l[x, y] = (float(matrix[x][y] - minimum) / maximum) * 255
-
- return new_image
+ def all_lines_h(self, image):
+ im_l = image.load()
+ lines1 = []
+ for x in xrange(image.size[0] / 2):
+ for y in xrange(image.size[1]):
+ if im_l[x, y]:
+ lines1.append(self.angle_distance((x, y)))
+ lines2 = []
+ for x in xrange(image.size[0] / 2, image.size[0]):
+ for y in xrange(image.size[1]):
+ if im_l[x, y]:
+ lines2.append(self.angle_distance((x, y)))
+ return [lines1, lines2]
def all_lines(self, image):
im_l = image.load()
lines.append(self.angle_distance((x, y)))
return lines
- def find_angle_distance(self, image):
- image_l = image.load()
-
- points = []
-
- count = 0
- point_x = 0
- point_y = 0
- for x in xrange(image.size[0] / 2):
- for y in xrange(image.size[1] / 2, image.size[1]):
- if image_l[x, y]:
- count += 1
- point_x += x
- point_y += y
- points.append((float(point_x) / count, float(point_y) / count))
-
- count = 0
- point_x = 0
- point_y = 0
- for x in xrange(image.size[0] / 2, image.size[0]):
- for y in xrange(image.size[1] / 2, image.size[1]):
- if image_l[x, y]:
- count += 1
- point_x += x
- point_y += y
- points.append((float(point_x) / count, float(point_y) / count))
-
- return [self.angle_distance(p) for p in points]
-
def angle_distance(self, point):
return (self.dt * point[1] + self.initial_angle, point[0] - self.size[0] / 2)