lines.sort(key=itemgetter(1))
return lines
-def board(image, lines, show_all, do_something):
- """Compute intersections, find stone colors and return board situation."""
+def b_intersects(image, lines, show_all, do_something, logger):
+ """Compute intersections."""
# TODO refactor show_all, do_something
# TODO refactor this into smaller functions
+ logger("finding the stones")
lines = [dst_sort(l) for l in lines]
an0 = (sum([l[0] for l in lines[0]]) / len(lines[0]) - pi / 2)
an1 = (sum([l[0] for l in lines[1]]) / len(lines[1]) - pi / 2)
draw.point((x , y), fill=(120, 255, 120))
do_something(image_g, "intersections")
- image_c = filters.color_enhance(image)
- if show_all:
- do_something(image_c, "white balance")
+ return intersections
+
+def board(image, intersections, show_all, do_something, logger):
+ """Find stone colors and return board situation."""
+
+# image_c = filters.color_enhance(image)
+# if show_all:
+# do_something(image_c, "white balance")
+ image_c = image
+
+ image_l = image_c.load()
+ import Image, sys
+ new_image = Image.new('RGB', (19 * 7, 19 * 7))
+ image_nl = new_image.load()
+ new_image2 = Image.new('L', (19 * 7, 19 * 7))
+ image_nll = new_image2.load()
+ y = 3
+ for line in intersections:
+ x = 3
+ for (xi, yi) in line:
+ for xx in [-3,-2,-1,0,1,2,3]:
+ for yy in [-3,-2,-1,0,1,2,3]:
+ try:
+ image_nl[x + xx, y + yy] = image_l[xi + xx, yi + yy]
+ except IndexError:
+ pass
+ for xx in [-2,-1,0,1,2]:
+ for yy in [-2,-1,0,1,2]:
+ try:
+ z = xi + xx
+ w = yi + yy
+ luma = lambda ((r,g,b)): colorsys.rgb_to_hls(r / 255., g /
+ 255. ,b /
+ 255.)[1]
+ image_nll[x + xx, y + yy] = (luma(image_l[z, w]) * (-8) +
+ luma(image_l[z - 1, w - 1]) +
+ luma(image_l[z - 1, w]) +
+ luma(image_l[z - 1, w + 1]) +
+ luma(image_l[z, w - 1]) +
+ luma(image_l[z, w + 1]) +
+ luma(image_l[z + 1, w - 1]) +
+ luma(image_l[z + 1, w]) +
+ luma(image_l[z + 1, w + 1])) * 255
+ except IndexError:
+ pass
+ x += 7
+ y += 7
+ do_something(new_image, "intersections")
+ do_something(new_image2, "intersections")
+
board_raw = []
#min_s1 = min(s[1] for s in board_raw)
#norm_s1 = lambda x: (x - min_s1) / (max_s1 - min_s1)
#color_data = [(norm_s0(s[0]), norm_s1(s[1])) for s in board_raw]
- color_data = [(s[0], s[1]) for s in board_raw]
-
- clusters = k_means.cluster(3, 2,zip(color_data, range(len(color_data))),
- [[0., 0.5], [0.5, 0.5], [1., 0.5]])
+ color_data = [(s[0], s[1],s[4]) for s in board_raw]
+ clusters, score = k_means.cluster(3, 3,zip(color_data, range(len(color_data))),
+ [[0., 0.5,0.0], [0.5, 0.5, 0.], [1., 0.5, 0.]])
+# clusters1, score1 = k_means.cluster(1, 2,zip(color_data, range(len(color_data))),
+# [[0.5, 0.5]])
+# clusters2, score2 = k_means.cluster(2, 2,zip(color_data, range(len(color_data))),
+# [[0., 0.5], [0.75, 0.5]])
+# import sys
+# print >> sys.stderr, score1, score2, score
+#
if show_all:
fig = pyplot.figure(figsize=(8, 6))
pyplot.scatter([d[0][0] for d in clusters[0]], [d[0][1] for d in clusters[0]],
except StopIteration:
pass
-
return output.Board(19, board_r)
def mean_luma(cluster):
sum(p[2] for p in points) / norm)
hue, luma, saturation = colorsys.rgb_to_hls(*color)
color = colorsys.hls_to_rgb(hue, 0.5, 1.)
- return luma, saturation, color, hue
+
+ der = 0
+ image_l = image.load()
+ for xx in [-2,-1,0,1,2]:
+ for yy in [-2,-1,0,1,2]:
+ try:
+ z = x + xx
+ w = y + yy
+ lumal = lambda ((r,g,b)): colorsys.rgb_to_hls(r / 255., g /
+ 255. ,b /
+ 255.)[1]
+ der += (lumal(image_l[z, w]) * (-8) +
+ lumal(image_l[z - 1, w - 1]) +
+ lumal(image_l[z - 1, w]) +
+ lumal(image_l[z - 1, w + 1]) +
+ lumal(image_l[z, w - 1]) +
+ lumal(image_l[z, w + 1]) +
+ lumal(image_l[z + 1, w - 1]) +
+ lumal(image_l[z + 1, w]) +
+ lumal(image_l[z + 1, w + 1]))
+ except IndexError:
+ pass
+
+ der = max(der / 36., 0)
+ return luma, saturation, color, hue, der