- #old optimization experiments:
- print dist
-
- path = [(0,0)] #MNTR
- s = 0.01
- for _ in range(10):
- ts1 = [(s, 0), (0, s), (-s, 0), (0, -s)]
- grids = [(get_grid(a + t[0] * v1, b + t[1] * v1,
- c, d, hough, size), t) for t in ts1]
- distances = [distance(im_l, grid, size) for (grid, t) in grids]
- gradient = [(di - dist) for di in distances]
- gradient = [gradient[0] - gradient[2], gradient[1] - gradient[3]]
- norm = (gradient[0] ** 2 + gradient[1] ** 2) ** 0.5
- gradient = [g / (100 * norm) for g in gradient]
- path.append(gradient)
- a, b = a + gradient[0] * v1, b + gradient[1] * v1
- dist = distance(im_l, grid, size)
- print dist
-
- ###MNTR
- import matplotlib.pyplot as plt
- from matplotlib import cm
- import pickle
-
- X, Y, Z = pickle.load(open('surface250'))
-
- plt.imshow(Z, cmap=cm.jet, interpolation='none',
- origin='upper', extent=(-0.250, 0.250, -0.250, 0.250), aspect='equal')
- plt.colorbar()
- plt.plot([y for (x, y) in path], [x for (x, y) in path], 'go-')
-
- plt.show()
- ###MNTR
-
- print "---"
-
- s = 0.02
- while True:
- ts1 = [(s, 0), (-s, 0), (s, s), (-s, -s), (-s, s), (s, -s), (0, s), (0, -s)]
- grids = [(get_grid(a, b,
- c + t[0] * v2, d + t[1] * v2, hough, size), t) for t in ts1]
- distances = [(distance(im_l, grid, size),
- grid, t) for grid, t in grids]
- distances.sort(reverse=True)
- if distances[0][0] > dist:
- dist = distances[0][0]
- grid = distances[0][1]
- t = distances[0][2]
- c, d = c + t[0] * v2, d + t[1] * v2
- print dist
- s *= 0.75
- else:
- break
-
- grid_lines = [[l2ad(l, size) for l in grid[0]], [l2ad(l, size) for l in grid[1]]]